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Determining the sequences of alleles co-inherited on a single chromosome, or haplotypes, is funda-

mentally important in genomics, molecular biology, and genomic medicine. Experimental methods

for determining haplotypes are currently labor intensive, expensive, and do not scale. The compu-

tation of haplotypes from genome sequencing, or haplotype assembly, employs graph-theoretic and

combinatorial algorithms intertwined with statistical models of DNA. The related problem of hap-

lotype reconstruction from a population sample, or haplotype phasing, uses the statistical linkage

between neighboring alleles and identical-by-descent (IBD) evolutionary relationships to reconstruct

the haplotype sequences. This dissertation introduces graph-theoretic, combinatorial, and statistical

algorithms for genome-wide haplotype reconstruction and IBD haplotype tract inference. Specifi-

cally, we present:

� DELISHUS, a mathematical model and exact polynomial-time algorithm for computing dele-

tion haplotypes in SNP array data.

� The HapCompass algorithm for diploid genomes (e.g. humans) which models haplotype

reconstruction as local optimizations on the cycle basis of a graph theoretic representation

of variant alleles captured by sequence reads. This framework provides an algorithmic design

strategy for a range of haplotype reconstruction problems and incorporates population genetics

and identity-by-descent theory into the haplotype reconstruction model.

� The first model and algorithm for haplotype assembly of polyploid genomes, that is, organisms

with more than two sets of homologous chromosomes (common in plant and tumor genomes).

� Tractatus, the first theoretically guaranteed exact and linear time algorithm for identical-by-

descent multi-tract inference.

We compare our approaches with a variety of competing algorithms and investigate the feasibility

of genome-wide haplotype reconstruction from computational and experimental perspectives.
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Preface

The work presented in this dissertation was performed in the laboratory of Sorin Istrail, PhD and

portions of this work have been published in Aguiar and Istrail (2012, 2013), Aguiar, Morrow,

and Istrail (2014), Aguiar, Wong, and Istrail (2014), Aguiar et al. (2012), and Halldórsson et al.

(2010, 2011). With the guidance of Sorin, I developed the theory, models, algorithms, and software

presented herein, with the follow exceptions:

Development of the haplotype phasing algorithm described in Chapter 2 was a product of close

collaboration with Ryan Tarpine and Bjarni Halldorsson. We collaborated with Bjarni Halldorsson

to define the initial modeling for DELISHUS in Chapter 3. The applications of DELISHUS to autism

was a product of the close collaboration with Dr. Eric Morrow. Wendy SW Wong simulated cancer

data and provided valuable input for Chapter 5. Eric Morrow provided guidance and data for the

experiments on autism GWAS data in Chapter 6.
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Chapter 1

Introduction to Population

Genomics

1.1 Molecular biology and genetics

Eukaryotic cells contain a set of deoxyribonucleic acid (DNA) molecules that collectively store the

genetic material of the organism. The DNA molecule contains a sequence of nitrogen bases termed

nucleotides, bases, or basepairs (bp) which encode the biological instructions expressed by a cell.

DNA is physically organized in coiled molecular structures called chromosomes, which collectively

constitute the genome. Advances in molecular biology have enabled researchers the ability to directly

examine the genome sequence of many organisms and associate specific heritable sequences, or genes,

with observable characteristics or phenotypes. Gene sequences are translated to RNA molecules that

encode the instructions on how to synthesize proteins, which are the primary molecular functional

units of the cell. It is hypothesized that genes are the basic unit of natural selection and genetic

variation is responsible for much of the differences observed both within and between populations.

This flow of genetic information in the cell is summarized by the central dogma of molecular

biology which suggests both the undirected flow of information between DNA and RNA molecules

and the directional flow from RNA to proteins. In particular, normal cellular function includes

replication of DNA, translation of DNA into RNA, and transcription of RNA into proteins. In

special circumstances, RNA can be replicated or reverse transcribed into DNA (e.g. in HIV). DNA

may also be directly transcribed into proteins but this is rare; the replication of protein to protein

and translation of protein to DNA or RNA has not been observed. This theory is, of course, a
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simplification of the complexities that occur in the cell and current research suggests the existence

of posttranslational modification of proteins, heritable variation in patterns of methylation in DNA,

and a larger role for non-coding RNA.

1.1.1 Mendelian inheritance

Named for the Austrian monk, scientist, and a founder of modern genetics Gregor Mendel, Mendelian

inheritance describes a set of fundamental rules governing the transmission of genetic material from

parents to offspring. In his experiments, Mendel observed a convincingly consistent patterns when

crossing pea plants with different observable phenotypes. For example, when crossing a pure yellow

seed strain with a pure green strain, all seeds of the next generation were yellow. Mendel deduced that

there was some fundamental unit of inheritance, which exists in pairs, segregates in the formation

of the gametes, and unites in the formation of the offspring.

1.1.2 Variation

The laws governing Mendelian inheritance and the central dogma suggest that alterations in genome

sequence can be passed to offspring and also propagate to synthesized proteins. The spectrum of

DNA sequence variation ranges from single nucleotide polymorphisms (SNPs) to more complex

structural variation (SV), for example deletions, insertions, or translocations of genomic material.

Approximately 99.5% of any two individuals’ genome sequences are shared within a population (Levy

et al. 2007). The 0.5% of the nucleotide bases varying within a population explain, in part, the

differences between individuals.

SNPs are the most abundant form of variation between two individuals in terms of number of

variants. However, structural variation affects a larger number of nucleotide bases. These variations,

which have shown to be increasingly important and an influential factor in many diseases (Stefansson

et al. 2008), are not probed using SNP arrays. A further limitation of SNP arrays is that they are

designed to probe only previously discovered, common variants. Rare variants, belonging perhaps

only to a small set of carriers of a particular disease and hence potentially more deleterious, will not

be detected using SNP arrays.

In the simplest case, a haploid genome contains a single copy of each chromosome. Other

genomes, e.g. human, contain two copies of each chromosome and are termed diploid. Many plants

and even some cells in human contains more than two copies and are referred to as polyploid or

k-ploidy where k is the number of copies of the genome. Experimental techniques for determining
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the alternative forms of variants (alleles) produce unordered sets in which the chromosome of origin

for each allele is unknown. The sequence of genomic alleles in a haploid genome with the non-

varying DNA removed is referred to as a haplotype. When the sequence of alleles is experimentally

determined for diploid or polyploid genomes, only the set of alleles at each variant are known and

this sequence of ambiguous sets of alleles is termed a genotype.

1.1.3 Recombination and linkage disequilibrium

During the formation of the gametes in the process of meiosis, genetic material can be exchanged be-

tween homologous chromosomes forming a recombinant chromosome. This process of chromosomal

crossover increases the amount of variation in a population by shuffling mutations on chromosomes.

For example, humans have two sets of homologous chromosomes. Both gametes inherit a haploid

copy of their parent’s chromosome. In the absence of recombination, a copy of the haploid chro-

mosome is inherited and alleles segregated on a single chromosome remain linked along its length.

With recombination, contiguous segments of both homologous chromosomes are incorporated into

the gametic chromosome. Segments of chromosome adjacent to a recombination breakpoint may

include allelic relationships not observed in the parental genome.

The rate of recombination varies across the genome but, as a general rule, the probability of a

recombination occurring between two mutations increases as the physical distance increases. Thus,

two adjacent mutations with a small chromosomal distance between them are less likely to be seg-

regated in different chromosomes than two mutations further apart. The concept of co-inherited

variant alleles or statistical correlation between pairs or a set of alleles is termed linkage disequilib-

rium (Lewontin 1988). The relationship between recombination and linkage disequilibrium (LD) is

demonstrated in Figure 1.1.

Linkage disequilibrium can be viewed as a deviation from the random association of alleles, or

linkage equilibrium (LE). For two variants vi, vj with alleles {A, a}, {B, b} and frequencies {fA, fa},

{fB , fb} respectively, random association among the alleles would suggest the haplotype frequencies

in Table 1.1. Popular measures of LD include the pairwise D, D′, r (Hill and Robertson 1968;

Lewontin 1988) and multi-loci informativeness measures (Lam, Tarpine, and Istrail 2011).

1.1.4 Genome-Wide Association Studies

A genome-wide association study (GWAS) is a large-scale approach of associating genetic variants

with observable outcomes in a population. GWAS proceed by identifying a number of individuals
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Figure 1.1: Recombination disrupts linkage disequilibrium. Originally, one ancestral non-mutated
haplotype exists in the population. (1) A mutation is introduced increasing the number of haplotypes
in the population to two. (2) When a distinct site is mutated a third haplotype is generated but the a
allele completely determines the b allele so the sites remain in relatively strong linkage disequilibrium.
The fourth haplotype may be generated from a the low probability event of an inheritable recurrent
mutation or (3) a recombination joining the a and B alleles from the blue and red chromosomes.

Haplotype LE Frequency Observed Frequency LD
AB fAfB fAB fAB − fAfB
Ab fAfb fAb fAfb − fAb

aB fafB faB fafB − faB
ab fafb fab fab − fafb

Table 1.1: Linkage disequilibrium (LD) viewed as deviation from linkage equilibrium (LE). D ≈ 0
suggests linkage equilibrium while D 6= 0 indicates some level of linkage disequilibrium.

carrying a disease or trait and comparing these individuals to those that do not or are not known

to carry the disease/trait. Both sets of individuals are then genotyped for a large number of SNP

genetic variants, which are then tested for association to the disease/trait. GWAS have been able

to successfully identify a very large number of polymorphisms associated to disease (Consortium

2007; Styrkarsdottir et al. 2008) and the amount of SNP data from these studies is growing rapidly.

Studies using tens of thousands of individuals are becoming commonplace and are increasingly the

standard in the association of genetic variants to disease (Gudbjartsson et al. 2008; Rivadeneira

et al. 2009; Styrkarsdottir et al. 2008). These studies generally proceed by pooling together large

amounts of genome-wide data from multiple studies, for a combined total of tens of thousands of

4



individuals in a single meta-analysis study. It can be expected that if the number of individuals

being genotyped continues to grow, hundreds of thousands, if not millions, of individuals will soon

be studied for association to a single disease or trait.

1.2 Data

In this dissertation, we describe algorithms that operate on a variety of molecular data. In all appli-

cations we are interested in the haplotype sequences of alleles which are experimentally determined or

computationally inferred from genotyping or sequencing technologies. Because experimental meth-

ods for determining haplotypes are infeasible to apply in most settings, we focus on acquisition of

sequence and genotype data.

1.2.1 Sequencing

The development of the polymerase chain reaction (PCR), DNA microarray, and genome sequencing

technologies have provided a foundation for the genomics era to thrive. PCR enables the exponen-

tial replication of DNA generating enormous samples of genomic material for various experimental

techniques. DNA microarrays contain millions of single stranded DNA probes which hybridize to

input DNA. The level of hybridization can be measured and can be applied to detect multiple types

of variation or the expression of genes. Genome sequencing technologies can determine the sequence

of bases in a genome. The cost of generating a raw megabase of DNA sequence has been decreasing

faster than Moore’s law since the early 2000’s (KA. 2009).

1.2.2 Genotypes

The two dominant experimental techniques for determining genotype sequences in humans are

genome sequencing and SNP microarrays.

Whole genome shotgun sequencing was employed to assembly the first human genome (Venter

et al. 2001). In this landmark study, researchers fragmented the DNA randomly into contiguous

pieces which could be sequenced using Sanger sequencing. Variants were inferred by comparing

the consensus genome assembly sequence with the aligned sequence read depth and quality data.

With the introduction of Illumina, 454, Pacific Biosciences, and other high-throughput sequencing

technologies (Koboldt et al. 2013; Mardis 2013) the cost of sequencing has plummeted, but the

workflow for calling variation from sequencing remains similar (Li et al. 2009; McKenna et al. 2010).
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Genotyping with sequence data enables discovery of de novo SNPs and more complex structural

mutations.

If the SNP alleles and adjacent sequences are known, then SNP arrays are an appropriate option

for genotyping large population samples. SNP arrays detect and interpret hybridization signals

from allele-specific oligonucleotide probes and target sequences. The hybridization signal can be

interpreted as either homozygous for either allele or heterozygous in parallel for millions of SNPs.

This technology is widely applicable to studies adopting the hypothesis that common variation is

the dominant genetic contributors to heritable disease, which is common in the population (applies

in most GWAS).

1.3 Haplotype reconstruction problems

High-throughput DNA sequencing technologies are producing increasingly abundant and long se-

quence reads. Third generation technologies promise to output even longer reads (up to a few

kb) with increasingly long insert sizes. While the latter promises to alleviate many of the difficul-

ties associated with high-throughput sequencing pipelines, both technologies suffer from producing

haplotype phase ambiguous sequence reads. Determining the haplotype phase of an individual

is computationally challenging and experimentally expensive; but haplotype phase information is

crucial in bioinformatics workflows (Tewhey et al. 2011) including genetic association studies and

identifying components of the missing heritability problem (e.g., phase-dependent interactions like

compound heterozygosity (Krawitz et al. 2010; Pierson et al. 2012)), the reconstruction of phylo-

genies and pedigrees, genomic imputation (Marchini and Howie 2010), linkage disequilibrium and

SNP tagging (Tarpine, Lam, and Istrail 2011).

Two categories of computational methods exist for determining haplotypes: haplotype phasing

and haplotype assembly.

1.3.1 Haplotype Phasing

Large population-based studies of variation employ DNA microarrays to produce genotype infor-

mation for a set of individuals. Given the genotypes of a sample of individuals from a population,

haplotype phasing attempts to infer the haplotypes of the sample using haplotype sharing informa-

tion within the sample. In the related problem of genotype imputation, a phased reference panel is

used to infer missing markers and haplotype phase of the sample (Marchini and Howie 2010). Meth-

ods for haplotype phasing and imputation are based on computational (Halldórsson et al. 2004) and
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statistical inference techniques (Browning and Browning 2011b), but both use the fact that closely

spaced markers tend to be in linkage disequilibrium and smaller haplotypes blocks are often shared

in a population of seemingly unrelated individuals.

If a diploid genotype contains i heterozygous variants, then the space of haplotype pairs consistent

with the genotype is 2i. Fortunately, although an exponential number of haplotype pairs are possible,

very few exist in the population. Haplotype phasing uses haplotype sharing in a population and the

co-inheritance of closely linked alleles to infer the haplotype solutions for a set of genotypes.

1.3.2 Haplotype Assembly

Standard genome sequencing workflows produce contiguous DNA segments of an unknown chro-

mosomal origin. De-novo assemblies for genomes with two sets of chromosomes (diploid) or more

(polyploid) produce consensus sequences in which the relative haplotype phase between variants is

undetermined. The set of sequencing reads can be mapped to the phase-ambiguous reference genome

and the diploid chromosome origin can be determined but, without knowledge of the haplotype se-

quences, reads cannot be mapped to the particular haploid chromosome sequence. As a result,

reference based genome assembly algorithms also produce unphased assemblies. However, sequence

reads are derived from a single haploid fragment and thus provide valuable phase information when

they contain two or more variants. Haplotype assembly – sometimes referred to as single individual

haplotyping (Rizzi et al. 2002) – builds haplotypes for a single individual from a set of sequence

reads (Schwartz 2010). The haplotype assembly problem aims to compute the haplotype sequences

for each chromosome given a set of aligned sequence reads to the genome and variant information.

After mapping the reads on a reference genome, reads are translated into haplotype fragments con-

taining only the polymorphic single nucleotide polymorphism (SNP) sites. A fragment covers a SNP

if the corresponding sequence read contains an allele for that SNP. Because DNA sequence reads

originate from a haploid chromosome, the alleles spanned by a read are assumed to exist on the same

haplotype. Haplotype assembly algorithms operate on either a SNP-fragment matrix containing a

row for each fragment and columns for SNPs or an associated graph that models the relationship

between fragments or their SNP alleles.

1.3.3 Identical-by-descent haplotype tract inference

The patterns of mutation and recombination along the genome produce a block-like structure where

variants within blocks are in high LD while variants across blocks are in LE. Figure 1.3 shows the
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Figure 1.2: Construction of the input to the haplotype assembly problem.

structure of LD in a 200kbp region around BRCA2 for two populations. We refer to the unique

haplotypes within these blocks as haplotype tracts. A haplotype tract can be unique or shared

among a set of individuals and is defined by its start and stop positions in a set of haplotype. A

haplotype tract in two or more individuals is identical-by-descent (IBD) if the sequence of alleles are

identical and the tract is inherited from a common ancestor.

In general, IBD haplotype tracts can range from the very recent (e.g. parent and child) to the

distant (e.g. two tracts 30 meioses apart). The expectation of both the amount of sharing and the

percentage of shared ancestry is a function of the number of meioses to the most recent common

ancestor. If two individuals are mth degree cousins (separated by 2m + 2 meioses), the expected

percentage of genome in IBD haplotype tracts is 1
22m . However, due to the patterns of recombination,

the lengths of IBD tracts are approximately exponentially distributed and mth degree cousins are

expected to share a region of average size 200
2n+2 centiMorgans in length (on average, 1 centiMorgan

represents a distance of 750kbp in the human genome (Lodish 2008)). In other words, even though

distantly related individuals may not share much of their genomes IBD, the haplotype tracts that

are shared IBD are expected to be large. Algorithms for inferring IBD tracts exploit these properties

of IBD to compute extended regions of sharing in haplotype and genotype data.

1.4 Algorithmic challenges

In this dissertation, we focus on combinatorial and statistical problems arising in haplotype re-

construction and identical-by-descent tract inference. Specifically, we study computing genomic
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Figure 1.3: This plot shows the HapMap CEU (top) and YRI (bottom) populations log odds (lod)
pairwise LD in a 200kbp region around BRCA2 (lod > 10) and generated using the HapMap genome
browser (Thorisson et al. 2005). The variants are along the x-axis and the color of the cells that
intersect from the diagonals of each variant represent the LD. The deeper the red color the more
LD.

deletions from genotype data in the context of autism, haplotype phasing of large populations using

IBD haplotype tracts, haplotype assembly of diploid, polyploid and cancer genomes, and IBD tract

inference in haplotypes. To aid the reader, we briefly re-introduce key concepts at the start of each

algorithmic part.

In Part I, we focus on algorithms for inferring haplotypes from genotypes. Chapter 2 focuses

on phasing individuals using IBD tracts inferred from genotype data. If a set of individuals share

a haplotype tract IBD, then every variant with at least one individual who is homozygous can

be phased. The concept is related to the work of Kong et al. (2008) in which the combination

of comprehensive pedigree information and extensive IBD sharing enabled the phasing of a large

proportion of the 35,528 Icelanders genotyped. We ask a similar question: how many individuals

in the United States population must be genotyped to haplotype phase the majority of SNPs using

IBD without explicit knowledge of pedigree information?

The main focus of Chapter 3 is phasing deletion haplotypes in large GWAS-sized cohorts. We

place a particular focus on autism and similar disorders of cognitive development. The connection

between genomic deletions and autism is well documented, but the vast majority of these associations

are for large and de novo deletions. Deletions inherited from a single parent, generally considered to
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be a healthy control in most study designs, have garnered less attention. We develop the DELISHUS

algorithm that exploits the structure of recurrent deletions to infer inherited deletions which may

impact developing brains sensitive to changes in protein concentration.

The overall theme of Part II is algorithms for inferring haplotype from sequence reads. Chapter 4

describes the well-studied problem of haplotype assembly of diploid genomes. For diploid genomes,

we can make simplifying assumptions on the structure of intermediate solutions, namely that the two

haplotypes are compliment of each other and there exists exactly two possible phasings between any

two variants. Chapter 5 describes algorithmic extensions of diploid haplotype assembly to polyploid

and cancer genomes. Assumptions made in the diploid case no longer hold, and thus we develop

a statistical framework for phasing pairs of SNPs and model the resolution of conflicts with the

k-disjoint paths problem which we can solve exactly for our graphs which have a specific structure.

Part III, Chapter 6 focuses on the problem of computing identical-by-descent haplotype tracts.

We describe our exact linear-time algorithm, termed Tractatus, for computing all IBD multi-shared

tracts in a set of haplotypes. The problem becomes more difficult when sequencing errors and

mutations occurring after divergence from the recent common ancestor are allowed. The remainder

of the chapter describes extensions for these cases and also inferring runs of homozygosity in genotype

data.

The dissertation concludes with Part IV Chapters 7 and 8 which concentrate on a discussion of

future work, open problems, and a summary of contributions.
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Part I

Haplotype Phasing
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Chapter 2

Haplotype Phasing Algorithms

To reach their full potential, the future direction of genetic association studies are mainly twofold:

the testing of more individuals using genome-wide association arrays and the resequencing of a

small number of individuals with the goal of detecting more types of genetic variations, both rare

SNPs and structural variation (Siva 2008). Testing multiple individuals for the same variants using

standard genome-wide association arrays is becoming increasingly common and can be done at a

cost of approximately $100 per individual. In the next couple of years it is plausible that several

million individuals in the US population will have been genotyped. In contrast, whole genome

resequencing is currently in its infancy. A few people have had their genome resequenced and the

cost of sequencing a single individual is still estimated in the hundreds of thousands of dollars.

However, whole genome sequencing is preferable for association studies as it allows for the detection

of all genomic variation and not only SNP variation.

Due to the fact whole genome SNP arrays are becoming increasingly abundant and whole genome

resequencing is still quite expensive, the question has been raised whether it would suffice to whole

genome sequence a small number of individuals and then impute other genotypes using SNP arrays

and the shared inheritance of these two sets of individuals. It has been shown – in the Icelandic

population with a rich pedigree structure known – that this could be done most efficiently using the

haplotypes shared by descent between the individuals that are genotyped and those that have been

resequenced (Kong et al. 2008). Haplotype sharing by descent occurs most frequently between closely

related individuals, but also occurs with low probability between individuals that are more distantly

related. In small, closely related populations, as in the Icelandic population, only a moderately

sized sample size is therefore needed in order for each individual to have, with high probability, an

12



individual that is closely related to them. In larger and more genetically diverse populations, such

as the US population, a larger sample size will be needed for there to be a significant probability

of an individual sharing a haplotype by descent within the population. We say that an individual

is “Clark phaseable” with respect to a population sample if the sample contains another individual

that shares a haplotype with this individual by descent. In this paper we explore what the required

sample size is so that most individuals within the sample are Clark phaseable, when the sample is

drawn from a large heterogeneous population, such as the US population.

Current technologies, suitable for large-scale polymorphism screening, only yield the genotype

information at each SNP site. The actual haplotypes in the typed region can only be obtained at

a considerably high experimental cost or computationally by haplotype phasing. Due to the im-

portance of haplotype information for inferring population history and for disease associations, the

development of algorithms for detecting haplotypes from genotype data has been an active research

area for several years (Clark 1990; Halldórsson et al. 2004; Kong et al. 2008; Scheet and Stephens

2006; Sharan, Halldórsson, and Istrail 2006; Stephens, Smith, and Donnelly 2001). However, algo-

rithms for determining haplotype phase are still in their infancy after about 15 years of development.

Of particular worry is the fact that the learning rate of the algorithms, i.e. the rate that the algo-

rithms are able to infer more correct haplotypes, grows quite slowly with the number of individuals

being genotyped.

In this chapter we present an algorithm for the phasing of a large number of individuals. We show

that the algorithm will get an almost perfect solution if the number of individuals being genotyped

is large enough and the correctness of the algorithm grows with the number of individuals being

genotyped. We will consider the problem of haplotype phasing from long shared genomic regions

(that we call tracts). Long shared tracts are unlikely unless the haplotypes are identical-by-descent

(IBD), in contrast to short shared tracts which may be identical by state (IBS). We show how we

can use these long shared tracts for haplotype phasing.

2.1 Long Range Phasing and Haplotype Tracts

The haplotype phasing problem asks to computationally determine the set of haplotypes given a

set of individual’s genotypes. We define a haplotype tract (or tract for short) denoted [i, j] as a

sequence of SNPs that is shared between at least two individuals starting at the same position i in

all individuals and ending at the same position j in all individuals. We show that if we have a long

enough tract then the probability that the sharing is IBD is close to 1. Multiple sharing of long
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tracts further increases the probability that the sharing corresponds to the true phasing.

2.1.1 Probability of Observing a Long Tract

We show that as the length of the tract increases the probability that the tract is shared IBD

increases. Let t be some shared tract between two individual’s haplotypes and l be the length of

that shared tract. We can then approximate the probability this shared tract is identical by state

(IBS) pIBS(l). Let fM,i be the major allele frequency of the SNP in position i in the shared tract t.

Assuming the Infinite Sites model and each locus is independent,

pIBS(l) =

l∏
i=1

((fM,i)(fM,i) + (1− fM,i) (1− fM,i))

We can approximate pIBS(l) by noticing fM,i ∗ fM,i dominates (1 − fM,i)(1 − fM,i) as fM,i → 1,

pIBS(l) ≈
∏l

i=1(fM,i)
2. Let favg be 1

l fM,i ∀i ∈ t. Then pIBS(l) ≈ (favg)2l. Given fM,i is some high

frequency, say 95%, then a sharing of 100 consecutive alleles is very unlikely, pIBS(100) ≈ 0.95200 =

10−5. For very large datasets we will need to select the length of the tract being considered to be

large enough so that the probability that the sharing is identical by state is small.

The probability two individuals separated by 2(k+ 1) meiosis (kth-degree cousins) share a locus

IBD is 2−2k (Kong et al. 2008). As k increases, the probability kth-degree cousins share a particular

locus IBD decreases exponentially. However, if two individuals share a locus IBD then they are

expected to share about 200
2k+2 cM (Kong et al. 2008). Relating P (IBD) to length of tract l,

P (IBD|sharing of length l) =
2−2n

2−2n +
(

(fM,i)2l + (1− fM,i)
2l
)

which is shown in Fig. 2.1. Figure 2.1 shows the probability of IBD haplotype sharing given a

tract of length l. We developed our phasing algorithm based on genotype sharing which exhibits a

similar trend as Fig. 2.1, but shifted to the right (that is, we require more SNPs to commit to an

IBD relationship).

2.2 The Clark Phase-able Sample Size Problem

Given the large tract sharing, we can construct the Clark consistency graph having individuals as

vertices and an edge between two individuals if they share a tract (Sharan, Halldórsson, and Istrail

2006). Figure 2.2 shows the Clark consistency graph for different minimum significant tract lengths
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Figure 2.1: Probability of IBD as a function of shared tract length (measured in SNPs) and plotted
for several n and major allele frequencies (MAF). Lower values for the MAF or n require less SNPs
in a tract to commit to an IBD relationship.

(or window sizes) in the MS dataset. At what minimum significant tract lengths will the graph

become dense enough so that phasing can be done properly? What percentage of the population

needs to be genotyped so that the Clark consistency graph becomes essentially a single connected

component? We call this “The Clark sample estimate: the size for which the Clark consistency

graph is connected.”

 

Figure 2.2: Left: The Clark consistency graph for SNP region [1400,1600). A large fraction of
individuals share consistent haplotypes of length 200 suggesting many are IBD. Right: The Clark
consistency graph for a smaller window size of 180 base pairs.

We computed the average number of edges in the haplotype consistency graph as a function of

window size to get a sense of when the Clark consistency graph of the MS data becomes connected.

Based on Fig. A.0.1 and P (IBD) we can propose an algorithmic problem formulation from the
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Clark consistency graph. Preferably we would like to solve either Problem 3 or 4.

Problem 1. Remove the minimum number of the edges from the Clark consistency graph so that

the resulting graph gives a consistent phasing of the haplotypes.

Problem 2. Maximize the joint probability of all the haplotypes given the observed haplotype sharing.

We believe that both of these problem formulations are NP-hard and instead propose to solve

these problems using a heuristic. Our benchmarking on simulated data shows that this heuristic

works quite well.

2.2.1 Phasing the Individuals That Are Part of the Largest Component

We now proceed with an iterative algorithm working on the connected components in the Clark

haplotype consistency graph. First we construct the graph according to some minimum length of

haplotype consistency (Fig. A.0.1 and P (IBD) aid in defining this length). We iterate through

each site of each individual to find the tracts. After finding a site with some long shared region,

we look at its neighbors in the connected component and apply a voting scheme to decide what

the value is for each heterozygous allele. After each individual has been processed we iterate with

having resolved sites in the original matrix.

Observation 1. If the Clark consistency graph is fully connected in a window, all individuals can

be phased at sites where there is at least one homozygote.

Therefore, phasing individuals in a connected component of the graph should be easy, but in

practice there will be some inconsistencies for a number of reasons. If a node in the Clark consistency

graph has a high degree then the phasing of that node will be ambiguous if its neighbors are not

consistent. At some times this may be due to genotyping error and at times this may be due to

identical by state sharing to either one or both of an individuals haplotypes. The identical by state

sharing may be a result of the haplotype having undergone recombination, possibly a part of the

haplotype is shared identical-by-descent and a part is identical by state.

Our alphabet for genotype data is Σ = {0, 1, 2, 3}. 0s and 1s represent the homozygote for the

two alleles of a SNP. A 2 represents a heterozygous site and a 3 represents missing data. Given a

set of n-long genotype strings G = {g1, g2, . . . , g|G|} where gi ∈ Σn, we represent this in a matrix
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M with m = 2 |G| rows and n columns:

M =



M1,1 M1,2 · · · M1,n

M2,1 M2,2 · · · M2,n

...
...

. . .
...

Mm,1 Mm,2 · · · Mm,n


Each genotype gi is represented by the two rows 2i− 1 and 2i. Initially, M2i−1,j = M2i,j = gi[j].

We define allele consistency to be:

c(a, b) =


1 if a = b or a ∈ {2, 3} or b ∈ {2, 3}

0 otherwise

Rows r and s of M are consistent along a tract [i, j] (i.e. have a shared tract) is written

C[i, j](r, s) =
∏

k∈[i, j]

c (Mr,k, Ms,k)

The length of a tract is written |[i, j]| = j − i+ 1.

A shared tract [i, j] between rows r and s is maximal shared tract if it cannot be extended to the

left or right; i.e., i = 1 or c(Mr,i−1, Ms,i−1) = 0 and j = n or c(Mr,j+1, Ms,j+1) = 0. The maximal

shared tract between rows r and s at position i is written Sr,s
i . It is unique. Note that if Sr,s

i = [j, k]

then ∀l∈[j, k]Sr,s
l = Sr,s

i .

2.2.2 Tract Finding and Phasing Algorithm

Given that there are some loci for which individuals share IBD and that these sharings are expected

to be large, we developed an algorithm to detect and use these sharings to resolve the phase at

heterozygous sites. Each site is resolved by determining if there are any other individuals that likely

share a haplotype by descent. SNPs that do not have their phase determined during any given

iteration will be processed in succeeding iterations. If there are enough long IBD loci, this algorithm

should unambiguously determine the phase of each individual.

We start by phasing the trios using Mendelian laws of inheritance. This replaces many of the

heterozygote sites (whenever at least one member of a family is homozygous) and even a few of the

sites having missing data (i.e., when the parents are both homozygous and the child’s genotype is

missing).
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To phase using long shared tracts, we start by fixing a minimum significant tract length L. We

run several iterations, each of which generate a modified matrix M ′ from M , which is then used as

the basis for the next iteration.

First, we set M ′ := M .

For each row r we examine position i. If Mr,i ∈ {0, 1} then we move to the next i. Otherwise

Mr,i ∈ {2, 3}, and we count “votes” for whether the actual allele is a 0 or 1.

V r
0 = |{s | s 6= r and |Sr,s

i | ≥ L and Ms,i = 0}|

V r
1 is defined analogously (the difference being the condition Ms,i = 1). If V r

0 > V r
1 then we set

M ′r,i := 0. Similarly for V r
1 > V r

0 . If V r
0 = V r

1 then we do nothing.

When Mr,i = 2, we make sure the complementary haplotypes are given different alleles by setting

the values of both haplotypes simultaneously. This does not cause a dependency on which haplotype

is visited first because we have extra information we can take advantage of. We count votes for the

complementary haplotype and treat them oppositely. That is, votes for the complementary haplotype

having a 1 can be treated as votes for the current haplotype having a 0 (and vice versa). So letting

r′ be the row index for the complementary haplotype, we actually compare V r
0 + V r′

1 and V r
1 + V r′

0 .

This is helpful when SNPs near position i (which therefore will fall within shared tracts involving i)

have already been phased (by trio pre-phasing or previous iterations). It also helps in making the

best decision when both haplotypes receive a majority of votes for the same allele, e.g., both have a

majority of votes for 0. In this case, taking into account votes for the two haplotypes simultaneously

will result in whichever has more votes getting assigned the actual value 0. If they each receive the

exact same number of votes, then no allele will be assigned. This also avoids the dependency on the

order in which the haplotypes are visited; the outcome is the same since votes for both are taken

into account.

In this manner, M ′ is calculated at each position. If M ′ = M (i.e. no changes were made) then

the algorithm terminates. Otherwise, M := M ′ (M is replaced by M ′) and another iteration is run.

2.2.3 Phasing the Individuals That Are Not a Part of the Largest Com-

ponent

Individuals that are part of small connected components will have a number of ambiguous sites once

they have been phased using the edges in their connected component. For these individuals, we

compute a minimum number of recombinations and mutations from their haplotypes to others that
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have better phasing (belong to larger components). We then assign these haplotypes phase based

on minimizing the number of mutations plus recombinations in a similar manner as the approach of

Minichiello and Durbin (2006).

Alternatively this could be done in a sampling framework, where we sample the haplotype with

a probability that is a function of the number of mutations and recombinations.

2.2.4 Results

We compared the correctness and learning rate of our algorithm against BEAGLE (Browning and

Browning 2009) using a simulated dataset. Using the Hudson Simulator (Hudson 2002), we generated

3000 haplotypes each consisting of 3434 SNPs from chromosomes of length 105. We estimated a

population size of 106 with a neutral mutation rate of 10−9. To generate genotypes, we randomly

sampled from the distribution of simulated haplotypes with replacement such that each haplotype

was sampled on average 2, 3, and 4 times. We applied our algorithm and BEAGLE to the simulated

data after combining haplotypes to create parent-offspring trio data (inspired by our analysis of the

MS dataset). Both algorithms effectively phase the simulated dataset largely due to the initial trio

phasing (Table 1). Our algorithm learns the true phasing at an increasing rate as the expectation

of haplotypes sampled increases. The most clear example of this trend is in the Brown Long Range

Phasing miscall rate. By weighing edges proportional to the length of sharing IBD rather than a

fixed set of votes per edge, we achieve more accurate phasings.

Population 1 Population 2 Population 3
BEAGLE miscall rate 0.0685% 0.0160% 0.00951%
Brown Long Range Phasing mis-
call rate

0.0501% 0.0148% 0.00503%

BEAGLE Error-free phasings 4467 6819 8898
Brown Long Range Phasing
Error-free phasings

4459 6840 8923

Total haplotypes 4524 6870 8940

Table 2.1: We created three populations using a base pool of 3000 simulated haplotypes using the
Hudson simulator. Populations 1, 2, and 3 were created by sampling each haplotype according to
a geometric distribution with expectation 2, 3, and 4 respectively. Haplotypes were then randomly
paired to create genotypes. The miscall rate is the ratio of 2’s miscalled to total 2’s (after trio
phasing). Error-free phasings denote the number of haplotype phasings with zero miscalled 2’s.
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Chapter 3

Deletion Haplotypes and Autism

3.1 Introduction

The understanding of the genetic determinants of complex disease is undergoing a paradigm shift.

Genetic heterogeneity of rare mutations with severe effects is more commonly being viewed as a major

component of disease (McClellan and King 2010). Phenotypic heterogeneity – a large collection of

individually rare or personal conditions – is associated with a higher genetic heterogeneity than

previously assumed. This heterogeneity spectrum can be summarized as follows: (i) individually

rare mutations collectively explain a large portion of complex disease; (ii) a single gene may contain

many severe but rare mutations in unrelated individuals; (iii) the same mutation may lead to different

clinical conditions in different individuals; (iv) mutations in different genes in the same pathways or

related broader pathways may lead to same disorder or disorder family (McClellan and King 2010).

3.1.1 Genetic heterogeneity in autism

Autism spectrum disorders (ASD) are an excellent example of where research is active in identifying

matches between the phenotypic and genomic heterogeneities (Bruining et al. 2010). A considerable

portion of autism appears to be correlated with rare point mutations, deletions, duplications and

larger chromosomal abnormalities including a disproportionately high rate of de novo large (> 100

kb) deletions and duplications (Morrow 2010). Rare severe mutations in multiple genes important

in brain development such as NRXN1, CNTN4, CNTNAP2, NLGN4, DPP10 and SHANK3 have

been identified in patients with ASD (Ching et al. 2010; Glessner et al. 2009; Guilmatre et al.
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2009; McClellan and King 2010; Sebat et al. 2007; Walsh, Morrow, and Rubenstein 2008). Further-

more, large recurrent structural mutations in genomic “hotspots”, such as in chromosomal regions

1q21.1, 15q11-q13, 16p11.2 and 22q11.21, have been shown to be associated with autism and other

psychiatric diseases (Mefford and Eichler 2009; Morrow 2010; Sanders et al. 2011).

Due to the size and growth rate of the human population, nearly all viable single nucleotide

polymorphisms (SNPs) are likely present in some individual; however, most point mutations are rare

and occur in low frequencies (a single individual or family). The large majority of such mutations

have no functional significance and persist by chance in the absence of selective pressures. In

contrast, mutations with significant deleterious effects on fertility (e.g. in some cases of severe

autism) are less frequently transmitted to subsequent generations. It follows that severe mutations

are disproportionately de novo and individually rare (McClellan and King 2010).

3.1.2 Deletion polymorphism in autism

A number of experimental and computational methods exist that can efficiently infer large and rare

deletions. Deletions of this type have exhibited a significant role in many diseases particularly in

autism where recent studies of simplex families suggest 7%-10% of autistic children have a variety of

large de novo deletions (Weiss et al. 2008). Examples of deletions in autism include highly penetrant

chromosomal deletions in regions that affect many genes (e.g. 22q11.2) and large deletions which

implicate few genes (e.g. DIA1 or NRXN1) (Morrow 2010; Morrow et al. 2008). The detection of such

variants has also been used successfully in finding deletions associated with schizophrenia (Stefansson

et al. 2008). While thousands of deletions have been cataloged with various platforms (Fiegler et al.

2006; Khaja et al. 2006; Mills et al. 2006; Stefansson et al. 2008) and deposited into the Toronto

Database of Genomic Variants (Iafrate et al. 2004), the vast majority are large and rare partly due

to the lack of a reliable methodology for the detection of small deletions.

In the context of genetic heterogeneity, compound heterozygosity and other phase-dependent in-

teractions between small deletion variants have been shown to play a role in complex disease (Hague

et al. 2003). Furthermore, deletion variants may also be involved in loss of heterozygosity and

uniparental disomy events, both of which may be genetic determinants in the development of dis-

ease (Stefansson et al. 2008). Each of these examples may include smaller deletion polymorphisms

which are commonly overlooked by GWAS as they are not directly probed by SNP arrays and diffi-

cult to infer from high-throughput sequence data. However, three main categories of computational

methods for inferring small deletions have been developed each associated with their own strengths
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and weaknesses.

3.2 Methods for identifying deletion polymorphism

3.2.1 Intensity-based

Intensity-based methods may be employed on SNP arrays or custom designed fine-tiling arrays (Wang

et al. 2007; Zerr et al. 2010). Because probe intensities are noisy, both SNP and fine-tiling arrays

require many probes to span the deletion for accurate measurement. Intensities from SNP arrays can

extend to genome-wide data but have difficulties inferring small deletions due to the wide spacing

of tag SNPs. Fine-tiling arrays provide a higher resolution for detecting small deletions but are not

in widespread use and are prohibitively expensive to implement for genome-wide data.

3.2.2 Sequence-based

Sequence-based algorithms first map sequence reads to a reference chromosome and then use coverage

estimates and mapping statistics to identify deletions (Medvedev, Stanciu, and Brudno 2009; Mills

et al. 2011). While regions of sparse read mappings may indicate the presence of a deletion, these

methods suffer from high false positive rates originating from regions that cannot be sequenced or

mapped with reads and inherent biases in the choice and assembly quality of the reference genome.

Additionally, as the sampling from high-throughput sequencers is not always random across the

genome, the problem of inferring deletions is conflated with the problem of detecting sampling bias,

particularly for hemizygous deletions.

3.2.3 Pedigree-based

The final category of algorithms is based on deletion inference from genotype data with a familial

structure. These SNP-based methods use genotype data to probe for specific genomic inheritance

events that suggest inherited or de novo deletion polymorphisms. The key insight lies within in-

heritance patterns where an individual should be heterozygous for a SNP allele according to the

laws of Mendelian inheritance, but is not. The deletion inference method employed here, as well as

previously published methods (Conrad et al. 2006; McCarroll et al. 2005), relies on the fact that the

SNP calling algorithm for SNP arrays and sequence data cannot distinguish between an individual

who is homozygous for some allele a and an individual who has a deletion haplotype and the allele a

(Fig. 3.1). Hemizygous deletions can then be inferred by finding such genotypic events throughout
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the data and analyzing their relationships to each other.

C  C  T  G  G  A  C

C  C  G  G  A  C  A

C C T G G A C

C C G G A C A

C                 C

C  C  G  G  A  C  A

C C G G A C C 

C C G G A C A

Called haplotypes

from SNP array 

or sequence data

Actual haplotypes 

(true biological state)

Individual 1

no deletion

Individual 1

hemizygous

SNPs SNPs

Figure 3.1: Alleles in the genomic interval of a hemizygous deletion are interpreted as homozygous
by modern technologies. For example, individual 1 is correctly called heterozygous at the blue SNP
position in the absence of a deletion but, if individual 1 is hemizygous, then each SNP will be called
homozygous throughout the span of the deletion. This is true for SNP array (the intensities of only
one probe is processed) and high-throughput sequencing technologies (sequence reads are sampled
from a single chromosome).

Previously developed SNP-based methods were applied to the SNP array HapMap data (Inter-

national HapMap Consortium 2003) containing a considerably fewer number of individuals than

current GWAS data (albeit with more SNPs). These methods do not consider multiple individu-

als and thus have difficulties inferring recurrent deletions that may be associated with disease in

association study data. However, a major benefit of SNP-based algorithms is that they extend to

genome-wide data and are not restricted to operate on SNP arrays; on the contrary, they have higher

power to infer deletions from SNP calls on high-throughput sequencing data. Another considerable

benefit of these approaches is that they are largely orthogonal to deletion inference from intensity-

based and sequence-based methods and can hence be used in conjunction with those methods to

control type I and type II error.

3.3 Prior work on genome-wide deletion maps

Several algorithms exist capable of producing genome-wide deletion maps. McCarroll et al. (2005)

developed a combinatorial clustering approach to identify sets of aberrant genotype inheritance

patterns for dense genome-wide HapMap data. Conrad et al. (2006) first classifies SNP genotypes

into several categories of Mendelian inheritance. They then iterate over all individuals separately

and search for several sites that provide strong evidence of a deletion near each other. Both of

these algorithms consider a single individual during deletion inference which is effective at finding
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large deletions. However, these algorithms are underpowered when considering data containing

small recurrent deletions. Corona et al. (2007) developed an algorithm aiming to support recurrent

deletion calling by estimating haplotype frequencies assuming the presence or absence of a deletion in

a window. This algorithm, however, phases the data first and the Mendelian inconsistencies caused

by genomic deletions create difficulties for haplotype phasing algorithms. In fact, haplotype phasing

algorithms generally convert all Mendelian inconsistencies to missing data prior to phasing thereby

removing the deletion signal from the data. In Halldórsson et al. (2011) we presented an algorithm

that called deletions based on a maximum clique finding heuristic algorithm. Although the run-time

of this algorithm was acceptable for GWAS data, we found it was missing deletion calls in genomic

regions of complex deletion signature. All of these methods employ heuristics and can miss small

deletions that may be conserved among a few individuals in the sample.

Aside from algorithms that exclusively use SNP data, a number of different technologies have

been used to determine deletions and other copy number variations (CNVs) throughout the human

genome. Conrad et al. (2009) used tiling arrays to identify 8888 (7075 unique) CNVs. Park et

al. (2010) employed a combination of a tiling array and resequencing to determine CNVs in an

Asian population. Levy et al. (2007) identified a number of CNVs from the sequencing of a single

individual. The 1000 Genomes Project has worked on identifying CNVs from the sequencing of

a subset of one thousand individuals (Siva 2008). There have also been SNP arrays developed to

specifically target CNVs (Halldórsson and Gudbjartsson 2011). These methods represent orthogonal

analyses and can be used alongside SNP-based methods to infer deletions.

In this dissertation, we present a SNP-based algorithmic framework for genome-wide hemizygous

deletion inference termed DELISHUS (deletions in shared haplotypes using SNPs). We model the

input SNP data using graph theory and implement efficient and exact algorithms to call genomic

deletions based on biological conservation of a pattern of Mendelian inconsistency. Because our

algorithms consider all individuals in the sample simultaneously, they achieve significantly lower

false positive rates and higher power when compared to previously published algorithms. By slightly

modifying the model, we also present an algorithm for detecting de novo deletions. After deletions are

called, we employ a similar graph theoretic approach for computing the critical regions of recurrent

deletions in polynomial time algorithm. We also present a human genome deletion map of the Autism

Genetic Resource Exchange (AGRE) GWAS data (Supplemental Figure 1). Our algorithmic strategy

is based on a combination of (1) using deletion conservation across many individuals to benefit from

recurrent deletions in the population; (2) modeling the input with graph theory and bounding the

number deletion calls by a polynomial; (3) implementing an exact backtracking algorithm which
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completes its computation on a GWAS sized dataset in a few minutes due to a sparsity condition

in the data. These three stringent requirements provide a rigorous basis for extracting genomic

deletions of all sizes from the abundant SNP data available from high-throughput sequencing and

array technologies.

3.4 Definitions and terminology

The input to our algorithm is an m× n genotype matrix M . The rows of M correspond to sets of

related individuals and we assume that for every individual i there exists at least one other individual

j such that i and j share a haplotype. In practice, M frequently consists of parent-child pairs or

parents-child trios from a family-based association study design. The columns of M correspond to

SNP calls for the m individuals. The genotype data are commonly obtained with SNP arrays but

are increasingly acquired from whole-exome or whole-genome sequence data that provide SNP calls

at a high resolution; consequently, this allows the detection of smaller or less frequent deletions.

Mendelian inheritance patterns in M can be divided into three major categories (Fig. 3.2). If an

inheritance pattern can be explained only by the introduction of a deletion haplotype or a SNP call

error, then we call it evidence of deletion. If the pattern can be explained by introducing a deletion

haplotype or SNP call error but follows the laws of normal Mendelian inheritance, then we call it

consistent with a deletion. Finally, if the pattern cannot be explained by introducing an inherited

deletion haplotype then we call it no deletion.

       deletion
A     allele 1
B     allele 2

(A   )          (BB)
AA            BB

BB
(   B)

(A    or AA)    (AA)
     AA            AA

AA
(   A or AA)

(AB)          (AB)
AB            AB

BB
(   B or BB)

Evidence 
of a deletion

Consistent 
with a deletion

No deletion

Figure 3.2: Each trio inheritance pattern can be classified into three categories under the interpre-
tation of inherited deletions. The evidence of deletion pattern provides evidence for the presence of
an inherited deletion. The no deletion pattern provides evidence for the absence of a deletion. The
consistent with a deletion pattern does not provide strong evidence for the presence or absence of a
deletion.
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ISMB	  2012	  –	  July	  17	  2012	  Figure 3.3: Parent-child pairs of encoded genotypes are converted to deletion vectors according to
Mendelian inheritance patterns that show evidence of a deletion, are consistent with a deletion, or
are not consistent with a deletion. Informally, evidence of deletion sites can only be explained by
introduction of a sequencing error or deletion polymorphism. Consistent with a deletion sites can
be explained by a deletion or normal Mendelian inheritance. Not consistent with a deletion sites
cannot be explained with a deletion.

3.5 Identification of inherited deletions

We assume, for ease of exposition, M consists of trio data (in general, individuals in M can be any

type of parent-child designation). DELISHUS first converts M to a new matrix M ′ with m
3 rows

and n columns. Each row of M ′ corresponds to a trio and each column corresponds to a trio-SNP

inheritance pattern. Let the value of the (i, j) cell be denoted M ′i,j . Then M ′i,j ∈ {0, 1, X} where

� M ′i,j = 1 if the ith trio exhibits an evidence of deletion inheritance pattern at SNP j.

� M ′i,j = 0 if the ith trio exhibits a consistent with a deletion inheritance pattern at SNP j.

� M ′i,j = X if the ith trio exhibits a no deletion inheritance pattern at SNP j.

The rows of M ′ are termed deletion vectors. Figure A.0.2 gives an in-depth overview of the genome

to deletion vector relationship. Figure 3.3 shows the translation from genotypes to deletion vectors.

DELISHUS then constructs a graph G(V,E) based on M ′. A node is introduced for each evidence

of deletion site and an edge between two nodes signifies that both nodes can be explained by the

same deletion; formally, let vi,j denote the vertex associated with row i and column j, then vi,j ∈ V
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if M ′i,j = 1 and (vi,j , vk,l) ∈ E if the ranges [M ′i,j ,M
′
i,l] and [M ′k,l,M

′
k,j ] contain no X. In this graph,

two nodes that are connected can be explained by the same deletion polymorphism and are termed

compatible. Therefore, dense subgraphs of G correspond to genomic regions that are likely to contain

inherited deletions. However, this picture is complicated by the fact that deletions may occur in a

region of the genome independently and at slightly different intervals.

3.5.1 Minimum number of errors

We present an exponential algorithm and a greedy heuristic for computing putative deletions. Both

algorithms begin by parsing M and removing SNPs in which the Mendelian error rate is above

5% to remove artifacts from genotyping. We then calculate the deletion vector for each trio in the

dataset which corresponds to using the table defined in Fig. 3.2 (Right) to translate each SNP site.

This new matrix is denoted N( |m|
3 ×n). To identify the genotyping errors and putative deletions,

we define two operations on the evidence of deletion sites of N : error correction call and deletion

haplotype call. An error correction call will categorize an evidence of deletion as a genotyping error

effectively removing it from any particular deletion haplotype. A deletion haplotype call will identify

a putative deletion as an inherited deletion haplotype. We infer inherited deletion haplotypes using

the objective function

minN (k1 ∗ (genotype error corrections calls) + k2 ∗ (deletion haplotypes calls))

where k1 and k2 are weighing factors. k1 and k2 can be simple constant factors or a more complex

distribution. For example, setting k1 to 2 and k2 to 7, we will prefer calling a putative deletion with

at least 4 pairwise compatible evidence of deletion sites an inherited deletion. The parameters must

be tuned to the input data. In the case of the Multiple Sclerosis dataset, the matrix N contains

small overlapping putative deletions and over 95% of N is non-putative deletions, that is, N is very

sparse.

We start by giving an exact exponential algorithm which minimizes the objective function. Let

xi denote a set of overlapping putative deletions.

1. For sparse N we can reduce the minimization function from minN to minx1..xs where x1..xs ∈

N and {x1..xs} ⊆ N .

2. Since any particular putative deletion is defined by the evidence of deletion sites, we can

enumerate all feasible non-empty sets of evidence of deletion sites for all xi.
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Computing this for all putative deletions demands work proportional to
∑s

i=1B(ei) where ei is

the number of evidence of deletion sites in xi and B is the Bell number. In practice, we found that

ei is bounded by a small constant but this complexity is still unreasonable for most ei.

For practical purposes, we’ve developed a greedy heuristic algorithm for cases where the exact

exponential algorithm is infeasible (Fig. 3.4).

1. For each xi ∈ N , the algorithm selects the component with the maximum trio sharing, that is,

the possibly overlapping putative deletions that include the most evidence of deletion sites. Be-

cause every two evidence of deletion sites in an inherited deletion must be pairwise compatible,

this component is a clique.

2. To find the maximum clique, we construct an overlap graph G(V,E) where hi ∈ V if hi is an

evidence of deletion in a putative deletion in this interval and (hi, hj) ∈ E if hi and hj are

compatible.

3. We find maximum cliques using a greedy approach that iterates over a queue containing the

compatible vertices, selecting the highest degree node vm and adding it to the potential clique

set if and only there is an edge between vm and each vertex in the clique.

4. At the end of this process, the algorithm calls the site(s) a deletion haplotype or genotyping

error according to the objective function, clears the set, and continues until all vertices in the

queue are processed.

Experimental Results on Simulated Data

We tested the algorithm using the same simulated dataset used to test our phasing algorithm. To

simulate and score an error-prone GWAS dataset containing a deletion, we define six parameters, two

metrics, and generate only one deletion in the genotype matrix (Table 2). We randomly select a set

of trios and an interval in the simulated haplotype matrix to contain the generated deletion. After

the site is selected, we place evidence of deletion sites on the SNPs according to some probability

(assumed independent for each SNP in the interval).

We observe promising results with our deletion model. Our algorithm is sensitive to inherited

deletions that are very short but shared among many individuals and also sensitive to inherited

deletions that are longer and shared by few people.

In general, the algorithm is accurate when the coefficient of deletion call and genotype error

call are tuned well (Table 3 – parameter sets 1-3). For a dataset with low genotyping error rate
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Trio 1 1 0 0 1 1 0 0 X 0 0 X X

Trio 2 0 X 1 0 1 1 X 0 0 X 1 X

Trio 3 X X 1 0 1 0 0 0 0 0 0 X

SNP Sites

Trio 1 1 0 0 1 1 0 0 X 0 0 X X

Trio 2 0 X 1 0 1 1 X 0 0 X 1 X

Trio 3 X X 1 0 1 0 0 0 0 0 0 X

Trio 1 1 0 0 1 1 0 0 X 0 0 X X

Trio 2 0 X 1 0 1 1 X 0 0 X 1 X

Trio 3 X X 1 0 1 0 0 0 0 0 0 X

Figure 3.4: A visual depiction of the greedy algorithm for finding putative deletions (consistencies
with particular parents are omitted for simplicity). The solid rectangles denote trio SNP sites which
have not been called yet. The dashed rectangle denotes a called inherited deletion haplotype. A
dotted rectangle denotes a genotype error call. First, the algorithm finds the submatrix (a clique in
G(V,E)) with the maximum trio sharing: SNP sites 3-6. Using the objective function, the algorithm
either calls the set of SNPs an inherited deletion or a set of genotyping errors (in this case the
former). The intervals are updated by removing vertices and edges from the overlap graph and the
algorithm continues. Both remaining subgraphs consisting of SNP sites 1 and 11 are both cliques of
size one. These will most likely be called genotyping errors.

Param
Set

Site Error
Prob.

Interval
Length

Trios in
Deletion

Prob. of
ED

Coeff.
of Dele-
tion

True
Positive

False
Positive

Runs

1 0.0001 5 5 0.75 11 1000 0 1000
2 0.0001 2 5 1 11 1000 0 1000
3 0.0001 9 3 0.75 11 1000 0 1000
4 0.0001 7 3 0.50 15 58 0 100
5 0.00333 9 3 0.75 15 100 38888 100

Table 3.1: We tested our deletion inference algorithm using the six tunable parameters as defined
in Table B.0.1. Each configuration was run with a coefficient of genotyping error of 2. Evidence of
deletion is denoted ED.

(∼0.0001 site error probability), the coefficient of deletion call can be set low; if it is set too high,

a true inherited deletion may be incorrectly called a genotyping error, possibly missing an evidence

of deletion (Table 3 – parameter set 4). A similar caveat pertains to datasets with significant

genotyping error rates (for instance, the MS dataset). A coefficient of deletion call that is too low

can yield false positives (Table 3 – parameter set 5). Finding appropriate tuning mechanisms for the

two coefficients to maximize algorithm specificity and sensitivity will be the subject of future work.
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3.5.2 Exact algorithm

Each vertex in G may be a member of many different dense subgraphs and thus we formulate the

problem of identifying deletions as follows:

Formulation 1. For each connected component d ∈ G and for each set of vertices that form a

maximal clique C in d, report C as deleted if |C| ≥ k where k is some threshold of evidence. Report

a subset of vertices in C as genotyping errors if they are not members of at least one deletion.

In the absence of genotyping or sequencing errors, each evidence of deletion site would indicate a

hemizygous deletion. In real data, random errors create false positives and the threshold k is tuned

to lift predictions above the noise level by enforcing a minimum number of evidence of deletion sites

to commit to a deletion. In particular, the value for k is guided by false positive rate and power

analysis experiments specifically tuned for a specific dataset. Formulation 1 computes all maximal

cliques which, in G, correspond to rectangular areas of M ′ whose evidence of deletion sites reinforce

each other. It takes exponential time to compute and output all maximal cliques in a general graph,

however, G has a special structure that allows us to achieve polynomial-time algorithms.

Lemma 1. G contains at most
(
n+1
2

)
maximal cliques.

Proof. Let C be a set of vertices forming a maximal clique in G. Let the interval of C be IC as

defined by the span of SNPs from the leftmost evidence of deletion site of C (denoted l) to the

rightmost evidence of deletion site of C (denoted r). We say C induces the interval of SNPs IC .

Because C is maximal, there cannot exist a vertex v /∈ C such that v is compatible with every

vertex of C, thus IC cannot be extended. Furthermore, a maximal clique distinct from C but

inducing IC cannot exist because each of its vertices must be compatible in the interval [l, r] which

is in violation of the maximality of C. It follows that no maximal clique other than C can induce

IC ; thus, each maximal clique uniquely defines an interval. Since
(
n+1
2

)
distinct intervals exist for

any given M ′, the statement follows.

�

Figure 3.5 gives an illustration of Lemma 1 on an example M ′ and G.

Because of Lemma 1, G has a polynomial number of maximal cliques. As the n of a larger

chromosome can be several hundreds of thousands, this may still be prohibitively large. A more

precise bound can be computed by observing that we only consider columns with at least one 1. Let

n1 be the number of columns containing at least one 1, therefore the number of maximal cliques is at

most
(
n1+1

2

)
. But, if non-overlapping sections of the matrix exist, we consider connected components
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Figure 3.5: The outline of the matrix M ′ is given with the red vertices corresponding to evidence
of deletion sites in G. Four maximal cliques are formed namely, {1,2},{1,3},{3,4,5} and {3,4,6,7}.
Each maximal clique induces an interval which is the shortest such interval associated to the vertex
set.

separately; let di be the ith connected component of the set of all components D and ndi
be the

number of columns with at least one 1 in the SNPs of di.

number of maximal cliques ≤
|D|∑
i=1

(
ndi

+ 1

2

)

We call the matrix M ′ sparse if the number of connected components is large. A sparse M ′

allows for trivial parallelization of deletion inference on distinct connected components and efficient

computations due to the component sizes being small. Table 3.2 shows that the probability of

evidence of deletion sites is low while the probability of a no deletion site is high for the HapMap

and AGRE data. This suggests that M ′ contains few deletion intervals compared to non-deleted

intervals and thus M ′ is sparse and D is large. This follows the intuition that the emergence of

deletion polymorphisms are typically infrequent events.

Data Evidence of deletion No deletion
HapMap P1 5.89× 10−4 0.30

HapMap P2+3 2.78× 10−4 0.18
AGRE autism 1.21× 10−4 0.41

Table 3.2: The probabilities of an evidence of deletion site and a no deletion site for HapMap and
autism GWAS data suggests M ′ is sparse.

Tsukiyama et al. (1977) presented an output sensitive algorithm that computes all maximal

cliques of a component d with edges e in time O(de) per clique generated.
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Corollary 1. Computing all genomic deletions of M ′ using Formulation 1 can be done in polynomial

time.

In practice, however, the Bron-Kerbosch algorithm for maximal clique computation has proven to

be more efficient. The Bron-Kerbosch algorithm is a recursive backtracking algorithm that computes

all maximal cliques in an undirected graph but is not guaranteed to run in polynomial time. Although

the Bron-Kerbosch algorithm is not an output-sensitive algorithm, it is still widely considered the

fastest maximal clique finding algorithm (Cazals and Karande 2008; Harley 2004). Also, through

empirical observations, the components of G are chordal with high probability. When a component

of G is chordal, we can compute all maximal cliques even faster by simply generating a perfect

elimination ordering.

With complex genetic heterogeneity (e.g. compound heterozygosity of small deletions), it is likely

most informative to compute all possible configurations of deletions. Each maximal clique can be

tested for association to disease if the data has a special structure. For example, the AGRE autism

dataset includes families with a mixture of children diagnosed with autism and children without

the disorder treated as healthy controls. DELISHUS computes the deletion transmission rates of

parents to children with autism and parents to children whom are healthy; these deletion calls and

transmission rates can be used to prioritize variants based on a number of statistical tests. This extra

phenotypic information helps resolve situations where multiple deletion configurations are possible

in the data (Fig. 3.6) and guides the deletion calls towards disease relevancy.

Not simultaneously consistent
(part of more than 1 deletion)

Figure 3.6: M ′ is shown on the left with a superimposition of evidence of deletion vertices and
edge connections. On the right, two maximal cliques are shown that share a subset of evidence of
deletion sites. If the threshold k ≤ 5, DELISHUS would report both cliques as potential deletions.
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3.6 Results

Formulation 1 also enables the resolution of complex genomic deletion “hot-spot” regions. These

regions (e.g. 22q11.21) pose the difficult problem of sorting through many possible configurations of

deletions. DELISHUS can identify and process every deletion separately to resolve these complexity

regions. Using this formulation, we called inherited deletions from the AGRE autism GWAS data

and produced a high level deletion map of autism (Figure A.0.3). Table 3.3 demonstrates that

DELISHUS is capable of efficiently resolving these regions for genome-wide data.

Data Runtime (s) Memory (GB)
HapMap P1 CEU 71.5 < 1

HapMap P2+3 CEU 91 < 1
AGRE autism 139.8 1.6

Table 3.3: We ran DELISHUS using Formulation 1 on HapMap P1, P2+3, and the AGRE autism
data. The HapMap P1 CEU data consists of 90 genotypes with about 1 million SNPs. The HapMap
P2+3 CEU data consists of 174 genotypes with about 4 million SNPs. The AGRE data includes
4327 genotypes with about 500k SNPs. We show DELISHUS scales to current GWAS sized data by
presenting the runtime and memory requirements for the AGRE autism data. We ran DELISHUS
on each chromosome in parallel on a cluster of 23 nodes. The numbers reported are the maximum
requirements for a single machine in the computing cluster.

However, if evidence of deletion sites must be committed to exactly zero or one deletion, we

can iteratively remove the largest clique of all maximal cliques in the component. More precisely,

if the cardinality of a maximal clique is ≥ k, we call the associated intervals deleted and remove

the corresponding vertices from the graph. Statistical models that score deletions based on other

quantities, such as deletion length or allele frequencies, may be used to provide a different ordering

for the maximal clique processing. For example, if deletion length were the most important statistic,

the green clique in Fig. 3.6 would be preferable to the blue clique. This procedure is iterated until

each evidence of deletion site has been called as part of a deletion or a SNP calling error.

3.6.1 Assessing the false positive rate

Our algorithm uses enrichment of compatible evidence of deletion sites from many individuals to

infer deletions. While inherited deletions are certainly a cause for evidence of deletion sites, these

sites may also arise from genotyping or sequencing errors. To assess the false positive rate occur-

ring from random error, we computed the distribution of evidence, consistent, and no deletion sites

across three datasets: HapMap Phase 1 CEU, HapMap Phase 2+3 CEU and the AGRE autism

data. We simulated a chromosome of length 25000 SNPs with 30, 58, and 2500 parent-child trios for

33



the HapMap Phase 1, HapMap Phase 2+3, and AGRE autism data respectively. The inheritance

patterns are drawn independently at random according to the distribution defined by each dataset.

We ran this simulation at different thresholds for 1000 iterations. These computations are conserva-

tive because the evidence of deletion probabilities were computed from the entirety of the HapMap

data including sites that may arise from both SNP calling errors and true genomic deletions.

The false positive rate depends on the density of the SNP array, the sample size of trios, and the

probabilities of Mendelian inheritance patterns. In the smaller HapMap data, DELISHUS produces

very few false positives at a threshold of 3. In the larger AGRE autism data, DELISHUS requires

a threshold of 5 to produce similar false positive rates. In contrast, when DELISHUS is tuned to

reproduce the results of Conrad et al. (2006) by considering each individual independently (identified

as the single individual algorithm), a threshold of 2 and 3 yields similar false positive rates for both

the HapMap and autism data. Table 3.4 summarizes these computations.

T D P1 D P2+3 D AGRE SI P1 SI AGRE
2 8.528 10.356 1214.063 0.701 1.854
3 0.076 0.135 141.13 0.001 0.001
4 0 0.001 11.274 0 0
5 0 0 0.632 0 0
6 0 0 0.028 0 0
7 0 0 0 0 0

Table 3.4: We simulated 25000 independent and identically distributed trio inheritance patterns
according to the distribution observed in the data. The HapMap P1 CEU, P2+3 CEU, and AGRE
autism data were simulated with 30, 58, and 2500 trios respectively. We inferred deletions using
different thresholds (T) for DELISHUS (D) and the single individual (SI) algorithms. The statistic
calculated for the false positive rate is the average amount of deletions detected in 1000 iterations
for the HapMap Phase 1 (P1), Phase 2+3 (P2), and AGRE autism GWAS data.

It is difficult to simulate false positives that may arise from technical artifacts, SNPs that are

poorly genotyped, or SNPs that are undersampled from sequence reads. If such a SNP passes quality

control, we may detect the error by observing the distribution of Mendelian errors. Mendelian errors

can be placed into two categories: those that show evidence of a deletion and those that do not. We

assume there is no bias toward producing genotyping errors in either category. Even though evidence

of deletion Mendelian errors are more probable, we would still expect to find non-evidence of deletion

Mendelian errors for poorly genotyped SNPs. For these reasons, we may filter out SNP sites with

many non-evidence of deletion Mendelian errors to reduce false positive rates from systematic errors.

Conservative approaches may further filter deletions that feature only one SNP containing evidence

of deletion sites regardless of the Mendelian error distribution.
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3.6.2 Estimating statistical power

The power to correctly infer deletions is a function of three variables: (1) the number of probes,

distance between probes, or size of the deletion, (2) the frequency of the deletion in the population,

and (3) the allele frequencies. To estimate the power for predicting deletions we use the HapMap

Phase 1 CEU, Phase2+3 CEU, and AGRE autism data; this selection fixes the allele frequencies.

When compute the size of the deletion in base pairs, we select a genomic position at random and

extend this interval for the defined size of the deletion. Therefore, it is possible for smaller deletions

to be missed by the data completely if no SNPs exist within the deleted interval. We can also

compute the size of a deletion in SNPs for which we randomly select a SNP and extend the deletion

interval appropriately. In this case, there is always at least 1 SNP in the interval of the deletion.

We varied the sizes of the deletions between 1 bp and 1 Mb or 1 and 20 SNPs and randomly

selected 3 individuals in the HapMap data and 5 individuals in the AGRE autism data to harbor

the deletions. To simulate the deletion, the genotypes of the child and a randomly selected parent

were altered to indicate an inherited deletion. That is, the alleles of the child and selected parent

were changed to homozygous for the non transmitted allele in the span of the deletion. A deletion is

said to be detected if the algorithm correctly reports a deletion for that specific trio. For example, if

DELISHUS detects 3 individuals having a deletion within the simulated deleted region in the AGRE

autism data, it will have detected 3/5 of the deletion.

We tested the power of the DELISHUS algorithm to detect inherited deletions within simulated

intervals of various sizes in the HapMap P2+3 CEU data (Fig. 3.7 Top). In general, algorithms that

infer deletions from SNP data have reduced power to infer deletions if only one parent is genotyped.

This is also true of X chromosome deletions compared to the autosomes; the SNP calls for deleted

haplotypes are less predictable and usually result in missing data. However, it is still feasible to

call X chromosome deletions passed from mother to daughter. Due to the density of the data, our

algorithm can robustly detect small deletions in the autosomes and performs fairly well on the X

chromosome.

We then compare the power of the DELISHUS algorithm and the single individual algorithm for

the HapMap P1 CEU data (Fig. 3.7 Bottom). This data is roughly one-quarter as dense but useful

for comparison of smaller sample sizes; it is also the same data used by Conrad et al. (2006). There

is a clear trade-off between false positive rates and algorithmic power to detect deletions. However,

when tuning the algorithms to achieve similar false positive rates, the DELISHUS algorithm clearly

outperforms the single individual algorithm due, in part, to leveraging the genomic information of
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the entire sample during inference.
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Figure 3.7: Top: The power to infer deletions in the HapMap Phase 2+3 CEU data as a function
of the number of base pairs in the deletion. Bottom: We compare the power of the DELISHUS
and single individual algorithms on HapMap Phase 1 CEU data. We average the power over all
autosomes as they produced a similar curve. There is less power to predict deletions on chromosome
X due to the male having only a single X chromosome. This power calculation was repeated 100 times
for each autosome and then averaged. In both figures, the threshold of the DELISHUS algorithm
was set to 3 and calibrated using the false positive rate calculations of the previous section. Also a
total of three individuals were selected at random to harbor the genomic deletion.

Current association studies feature about as many SNPs as the HapMap data but many more

individuals. Considering this, we applied the DELISHUS and single individual algorithms to the
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AGRE autism data (Fig. 3.8 Top). Five trios were selected at random (from the set of about 2500

trios) and a random interval was deleted. Using conservative thresholds, the DELISHUS algorithm is

much more sensitive than the single individual algorithm. DELISHUS excels at inferring recurrent

small deletions but the power of the two algorithms eventually converges as the deleted genomic

interval increases. This proposition is highlighted in Fig. 3.8 Bottom where we inspect small

deletions at a high resolution. The trend for the X chromosome is similar to the autosomes and is

omitted.

Power to infer deletions is also a function of deletion frequency. After increasing the frequency

of the deletion in the sample from 0.2% to 1%, the power of the DELISHUS algorithm increases

significantly and notably for smaller deletions (Fig. 3.9).

3.7 Identification of de novo deletions

Recent studies have highlighted the importance of protein altering de novo mutations for neural

developmental disorders like autism (O’Roak et al. 2011). Inferring de novo deletions in genotype

data is more difficult due to the parent having a lower frequency of homozygous SNPs over the

interval of the child’s deletion. For instance, the no deletion pattern in Fig. 3.2 could be hiding

an undetectable de novo deletion. Figure 3.10 shows the inheritance patterns for inherited and de

novo deletions for a pair of individuals sharing a haplotype. The most obvious relationship between

the two types of deletions is that there is a much higher probability of consistent with a deletion

patterns when inferring de novo deletions. This causes G to become more connected and, in regions

of deletion complexity, may cause DELISHUS to run in superpolynomial time. However, Lemma

1 still applies, thus this problem remains theoretically polynomial and empirical evidence suggests

our algorithms are still efficient.

Table 3.5 shows false positive rates for the DELISHUS de novo deletion inference algorithm on

the AGRE autism data. We do not observe a significant increase in the false positive rate because

the probability of a no deletion site is only reduced slightly. If the probability of a no deletion site

is high enough and the threshold is set to a large enough value, random genotyping errors cannot

form enough compatible evidence of deletion sites to be called a deletion.

We have found many examples of de novo deletions in the autism AGRE dataset. Figure 3.11

shows the two different interpretations of M ′ using Fig. 3.10. Due to data usage rules, we have

substituted the gene name. It is certainly the case that one larger de novo deletion is more likely than

3 smaller inherited deletions. In this case the de novo deletion becomes connected and not many
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Figure 3.8: The power of the DELISHUS and single individual algorithms to infer inherited deletions
in the AGRE autism autosomal data using (Top) a view of large deletions defined by basepairs and
(Bottom) a higher resolution view for small deletions defined by SNPs. In both cases, a total of five
individuals were chosen at random to harbor the deletion.

other SNPs become consistent with a deletion. In practice we do observe this same phenomenon

which most likely occurs because the probability of no deletion is still sufficiently large.
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Figure 3.9: The power of the DELISHUS and single individual algorithms to infer highly recurrent
small inherited deletions with a frequency of 1% (or 25 people) in the AGRE autism data.
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Figure 3.10: Categories of inheritance between a pair of individuals sharing a haplotype for inherited
and de novo (in individual B) deletions. To represent all possible inheritance patterns, we encode
an individual’s SNP as 0 or 1 for the homozygote, 2 for the heterozygote, and 3 for missing data.
Unlike inherited deletions, if individual A is a heterozygote, individual B may still harbor a de novo
deletion.

3.8 Identification of the critical regions of recurrent deletions

Deletions in autism and other neurological disorders are often recurrent (Stefansson et al. 2008; Weiss

et al. 2008), with multiple deletions occurring in the same region of distinct individuals indepen-

dently. Recurrently deleted regions often present a complex deletion signature with many deletions
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T D AGRE
5 0.94
6 0.06
7 0.002

Table 3.5: We simulated 25000 trio inheritance patterns for 2500 trios using parameters from the
AGRE autism data. We inferred deletions using different thresholds (T) for the DELISHUS (D) de
novo algorithm. The statistic calculated for the false positive rate is the average amount of deletions
detected in 500 iterations.

inherited 
deletions

Gene X
de novo 
deletions

A
B
C
D
E
F
G
H

A
B
C
D
E
F
G
H

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

Figure 3.11: We show the graph G superimposed on M ′ with the trio rows denoted A-H and the
SNPs denoted S1-S14 for inherited and de novo deletion interpretations. For inherited deletions,
Gene X displays three small 3-cliques each conferring little evidence of being a true deletion. When
interpreting this data for de novo deletions, the second trio shows evidence for one larger de novo
deletion. In G, we see that the second trio now becomes a hub for connections to trios C through
F. The outlined black, red, and white maps are deletion heat maps representing M ′. Regions of 1’s
and 0’s are represented by red and white respectively. Regions of X’s and 0’s are represented by
black.

existing at slightly different intervals. While many configurations of deletions exist, interpretation

of these regions is often formulated in a parsimonious manner. Critical regions capture this sense

of parsimony and are defined as a region of large overlap for a subset of deletions. Critical regions

are often used when attempting to connect a set of associated recurrent deletions to underlying

biological mechanisms.

Because many critical regions may exist in the data, it is often useful to prioritize critical regions

by generating a ranking. Formulation 2 demonstrates one method for prioritization using critical

region size.

Formulation 2. Report all recurrently deleted regions shared by at least k′ deletions as significant

critical regions.
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To solve this formulation, we construct a graph G′(V ′, E′) on the set of recurrent deletions. We

introduce a vertex v ∈ V ′ for each deletion and an edge (vi, vj) ∈ E′ if vi and vj share a SNP index.

As the deletions are intervals on the chromosome we can make the following observation.

Observation 2. G′(V ′, E′) is an interval graph and hence chordal.

Each maximal clique now corresponds to a critical region and its size corresponds to the number of

deletions participating in the critical region. Therefore, an algorithm for Formulation 2 first computes

G′(V ′, E′) from the output of DELISHUS for inherited or de novo deletion. Because G′(V ′, E′) is

chordal, all critical regions are computed using perfect elimination orderings to generate maximal

clique components in guaranteed polynomial time. Critical regions with the number of deletions

≥ k′ are then ranked according to some metric (e.g. size).

3.8.1 Validation of deletions

Deletion calls may be validated with several types of experimental and computational methods. A

select subset of deletions inferred in the autism GWAS data are scheduled to undergo experimental

validation in Dr. Morrow’s laboratory using qPCR and custom-designed fine-tiling arrays. We

validated our HapMap P1 deletion calls by comparing inferred inherited deletions to the deletions

found by Conrad et al. (2006) and testing for a significant overlap. Conrad et al. (2006) developed

a method that calls a region deleted if two or more evidence of deletion sites exist within close

proximity to each other. From the set of computationally inferred deletion calls in the HapMap

P1 data, they apply additional filtering steps and commit to 543 deletions (data extracted from the

Database of Genomic Variants). From our analysis of the HapMap P1 data, we were able to produce

a total of 1844 deletions covering all 543 deletions of Conrad et al. (2006).

We have shown previously that this type of analysis yields few false positives per chromosome

(0.701 on average, Table 3.4). However, recurrent genomic deletions may be shared by descent or

appear more frequently in specific genomic regions. In the both cases, DELISHUS uses information

of the entire sample to call genomic deletions which explains, in part, the increased number of

deletion calls.
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Chapter 4

Diploid Genomes

4.1 Introduction

A considerable amount of theory and algorithms have been developed for the haplotype assembly

problem (Halldórsson et al. 2004; Schwartz 2010). One approach is to restrict the input to convert

an NP-hard optimization into a computationally feasible problem. For example, some authors have

considered restricting the input to sequences of small read length or without mate pairs (termed

gapless fragments) (Bafna et al. 2005; He et al. 2010; Lancia et al. 2001; Li et al. 2006; Rizzi

et al. 2002). These models, however, are often unrealistic for current high-throughput and future

third generation sequence data. Moreover, gapless fragment models are particularly problematic

as paired-end sequencing is required to cover SNP alleles that are spaced at distances longer than

the sequencing technology’s read length. Other combinatorial and statistical algorithms have been

developed for general data that relax the optimality constraint (Bansal et al. 2008; DePristo et al.

2011; He et al. 2010; Panconesi and Sozio 2004). For example, HapCut, which was used to assemble

Craig Venter’s diploid genome, computes maximum cuts on a graph modeled from the fragment

matrix to iteratively improve their phasing solution (Bansal and Bafna 2008). Several of these

methods were developed when Sanger was the abundant form of sequencing and thus it is unclear

whether they can handle massive data on the scale of the 1000 genomes project and beyond. We will

test this hypothesis for two leading haplotype assembly algorithms: the Genome Analysis ToolKit’s

read-backed phasing algorithm (DePristo et al. 2011) and HapCut (Bansal and Bafna 2008). For a

survey of these approaches see Schwartz (2010).
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4.1.1 Definitions

Let a fragment f be a sequence read with the non-polymorphic bases removed such that only SNPs

remain. Fragments may be either a single contiguous region of DNA or contain any number of gaps

between contiguous regions (for example, one gap between two contiguous regions in paired-end

sequencing). Each SNP must be heterozygous and each row must cover at least two SNPs to be

able to extract useful haplotype phase information from sequence reads. A SNP allele is encoded as

0 or 1 corresponding to the major or minor allele. The kth base of the ith fragment is referred to

as fi,k. If fi does not include the base k in the sequence read (within the gap of a paired-read, for

instance) then fi,k = ’− ’. Let M be the m×n SNP-fragment matrix with m rows corresponding to

the m fragments and n columns corresponding to n SNPs. Two fragments fi and fj are in fragment

conflict if

∃k|fi,k 6= fj,k ∧ fi,k 6= ’− ’ ∧ fj,k 6= ’− ’ (4.1)

Informally, fragment conflict represents two fragments that include the same SNP but differ in the

allele.

The input to the haplotype assembly problem is a matrix M whose rows correspond to aligned

read fragments and columns correspond to SNPs (Figure 1.2). The quality of M ’s construction

depends on the parameters of the sequencing workflow and the accuracy of the read alignment

algorithms. Misaligned read fragments can introduce erroneous base calls or sampling biases so the

careful alignment of sequence reads is necessary for high quality haplotype assemblies. Without read

alignment or sequencing errors, the haplotype assembly problem can be solved in time linear in the

size of M by partitioning the fragments in two sets whereby no fragments internal to a set share a

SNP and differ in the allele called. When errors are present, error correction may be modeled by:

removing a fragment (row), removing a SNP (column), or flipping the matrix entry defined by a

particular fragment and SNP (from 0 to 1 or vice versa). The goal is to convert M into a state such

that the fragments (rows of M) can be distributed into two sets corresponding to the two haplotypes.

All fragments in a set must agree on the allele at each SNP site and this is accomplished using the

minimum number of:

1. Minimum error correction (MEC): SNP allele flips (0 to 1 or vice-versa)

2. Minimum SNP removal (MSR): SNP (columns of M) removals

3. Minimum fragment removal (MFR): fragment (rows of M) removals
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4.1.2 Graph models

Two fundamental graph models associated to the SNP-fragment matrix M were introduced by

Lancia et al. (2001) called the fragment conflict graph and the SNP conflict graph. The fragment

conflict graph, GF (M) = (VF , EF ), is defined as follows: the vertices are fragments, fi ∈ VF , ∀i

and the edges are {fi, fj} ∈ EF if fi and fj conflict ∀i, j. For an error-free M , each connected

component in GF (M) has a bipartition and thus the vertices can be divided into two conflict-free

disjoint subsets; the subsets define a haplotype phasing for the SNPs associated with the connected

component (Figure 4.1).

The SNP conflict graph, GS(M) = (VS , ES), is defined as follows: the vertices are SNPs, si ∈ VS ,

∀i and the edges {si, sj} ∈ ES if si and sj exhibit more than two haplotypes ∀i, j. If si and sj

exhibit three or four haplotypes, then some read covering si and sj contains at least one error because

only two haplotypes are possible for a diploid organism. Methods like HASH and HapCut employ

different graph models where SNPs correspond to vertices and fragment information is encoded in

the edges (Bansal and Bafna 2008; Bansal et al. 2008). HASH and HapCut keep a reference to the

current phasing of the data and each edge is weighted proportional to the number of fragments that

cover the adjacent SNPs and agree with the reference phasing.

4.1.3 Graph problem formulations

Every M induces a particular GF , GS , and GC , and error correction models on these graphs yield

different formulations of the haplotype assembly problem. The previously defined MEC, MSR, and

MFR optimizations (along with minimum edge removal) can be defined in terms of the fundamental

graph models.

1./2. Minimum edge/fragment removal (MER/MFR): Remove the minimum number of edges/ver-

tices from the fragment conflict graph GF (M) such that the resulting graph is bipartite.

3. Minimum SNP removal (MSR): Remove the minimum number of vertices from the SNP conflict

graph GS(M) such that no two vertices are adjacent.

4. Minimum error correction (MEC): Correct the minimum number of errors in fragments of M (by

switching the allele from 0 to 1 or vice versa) such that the induced matrix M ′ is resolvable

into two distinct haplotypes.

We note that in the MER formulation, although GF may be completely resolvable, the resulting

haplotypes may not be completely free of conflicts. A consensus SNP is commonly chosen at the
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Haplotype A: 1 0 0

Haplotype B: 0 1 1

1 0 −
1 − 0

− 0 0

0 1 −
− 1 1

0 − 1

Figure 4.1: We consider three fragments sampled from both Haplotype A and Haplotype B. Frag-
ments are represented as vertices and edges connect fragments in conflict. The dotted line represents
the bipartition that separates the fragments of Haplotype A and Haplotype B.

construction of the haplotypes.

4.1.4 Prior work

Lancia et al. (2001) and Rizzi et al. (2002) provide a theoretical foundation for the MFR and MSR

optimizations and describe the fundamental SNP and fragment conflict graph structures. The first

widely available haplotype assembly software package was presented in Panconesi and Sozio (2004)

in which the authors describe the Fast Hare algorithm which optimizes the “Min Element Removal”

problem. Bansal et al. (2008) describes a Markov chain model with Metropolis updating rules to

sample a set of likely haplotypes under the MEC optimization. In a follow-up, the authors presen

t a much faster algorithm on a related graph model that relates maximum cuts to SNP allele flips

(in the MEC model) (Bansal and Bafna 2008). Still other authors have suggested reductions to

the well-known maximum satisfiability problem (He et al. 2010; Mousavi et al. 2011). The Levy

et al. (2007) algorithm is a well-known heuristic that was used to haplotype assemble the HuRef

genome; it assigns fragments to haplotypes in a greedy fashion and iteratively refines the solution

by comparing the set of fragments to the assembled haplotypes using majority rule phasings. In

a recent survey, Geraci (2010) describes the Levy et al. (2007) algorithm as, arguably, the best

performing algorithm tested. The Genome Analysis ToolKit (McKenna et al. 2010) is a well-known

software package which includes a haplotype assembly method that builds a Bayesian framework for

the reads and attempts to infer the haplotypes with highest probability.
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When the input is restricted to gapless fragments, i.e. each fragment covers a contiguous set of

SNPs, MFR and MSR can be solved efficiently. However, when considering sequence reads with an

arbitrary length between an arbitrary number of contiguous blocks of SNPs, MFR and MSR are

NP-hard (Lancia et al. 2001). MER is NP-hard for general input (Lippert et al. 2002) and MEC is

NP-hard even for gapless instances (Lippert et al. 2002; Zhao et al. 2005).

4.2 HapCompass

4.2.1 A new model: Compass graphs

Our algorithms operate on a new undirected weighted graph associated to the SNP-fragment ma-

trix M (similar to the SNP conflict and HapCut graphs), called the compass graph, GC(M) =

(VC , EC , w), defined as follows: (1) the vertices are SNPs, si ∈ VC ; (2) the edges are {si, sj} ∈ EC if

at least one fragment covers both si and sj ; (3) each edge {si, sj} has an associated integer weight

w(si, sj). The weight function w is defined by the fragments. Because there exists exactly two

phasings between any two heterozygous SNPs for a diploid genome, let us denote the two possible

phasings as 00
11 when the haplotype 00 is paired with the haplotype 11 and similarly denote 01

10 the

other phasing. Our weight function w for a pair of SNPs simply counts the difference between the

number of 00
11 phasings and the number of 01

10 phasings as defined by the fragments. Formally, let F

be the set of all fragments covering two SNPs si and sj . The weight w(si, sj) is defined as follows:

∑
fk∈F

[
1
(

(fk,i = 1 ∧ fk,j = 1) ∨ (fk,i = 0 ∧ fk,j = 0)
)

− 1
(

(fk,i = 1 ∧ fk,j = 0) ∨ (fk,i = 1 ∧ fk,j = 0)
)]

where 1(b) = 1 for b true and 1(b) = 0 for b false. We note that a subgraph of a compass graph is

also a compass graph.

The compass graph GC encodes information derived from the fragment set regarding the phasings

of SNPs in its edge weights. For example, fragments covering three SNPs would provide phasing

information for all the
(
3
2

)
edges defined by the fragment in GC . The collected evidence for an edge

may have conflicting information, that is, some fragments may provide evidence for a 00
11 phasing

while other fragments suggest a 01
10 phasing. An edge with weight of zero occurs when evidence for

both phasings between the pair of SNPs is equal and thus both phasings are considered. An edge

with a non-zero weight is called decisive. A decisive edge in EC defines the phasing between its two
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SNPs which is given by the sign of its weight i.e., majority rule phasing.

Figure 4.2 illustrates the relationship between M and its compass graph GC(M).

HapCompass: A Fast Cycle Basis Algorithm for Accurate 
Haplotype Assembly of Sequence Data

Introduction

Derek Aguiar and Sorin Istrail
Department of  Computer Science and Center for Computational Molecular Biology, Brown University, Providence, RI, USA

Derek_Aguiar@brown.edu, Sorin_Istrail@brown.edu

High-throughput DNA sequencing technologies are producing increasingly abundant 
and long sequence reads. However, the ambiguity of the sequence read’s haplotype 
phase creates many difficulties in downstream bioinformatics workflows. Given a set of 
sequence reads obtained from a given sequencing technology for a diploid organism, 
the haplotype assembly problem aims to reconstruct the two distinct copies of each 
chromosome ([1][2]; for a recent survey see [3]). 

In this work, we present novel algorithms, collectively termed HapCompass, for 
haplotype assembly from genome sequencing data [4]. We compare HapCompass on 
benchmark sequence data with the two leading software packages: HapCut [5] and the 
Genome Analysis ToolKit’s (GATK) read-backed haplotype phasing algorithm [6]. We 
show that HapCompass is faster and more accurate using a variety of metrics on real 
and simulated data. Finally, we present simulations to highlight the type of data needed 
to supplement existing 1000 Genomes Project data to completely phase a chromosome.
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Methods

We’ve shown the feasibility of a haplotype assembly approach 
to produce large haplotypes through a simulation study of 
mate-paired reads. Additionally, we’ve shown the value of a 
cycle-basis, spanning tree algorithm for haplotype assembly by 
demonstrating superior accuracy for both real and simulated 
data. For more information please refer to our recent 
HapCompass publication [4].

HapCompass is available for download at the Istrail 
Laboratory Website: http://www.brown.edu/Research/
Istrail_Lab/
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The biological input to the haplotype assembly problem is a set of 
DNA sequence reads for a single individual. A fragment is a mapped 
sequence read that has the non-polymorphic bases removed. The 
algorithmic input consists of an m × n SNP-fragment matrix M 
whose m rows correspond to fragments f1‚ . . . ‚fm each containing two 
or more heterozygous SNPs and n columns correspond to 
heterozygous SNPs s1, . . . ,sn.

Two fragments fi and fj are in fragment conflict if they cover a 
common SNP and have different alleles at that site (Figure 1). For an 
error-free M, the fragments can be partitioned into two conflict-free 
disjoint subsets corresponding to the two haplotypes. Our algorithms 
operate on an undirected weighted graph abstracted from the SNP-
fragment matrix M called the compass graph (Figure 2) defined as 
follows: (1) the vertices are SNPs, (2) an edge exists between two 
SNPs si and sj if at least one fragment covers si and sj and (3) each 
edge {si, sj} has an associated weight, w(si,sj), equal to the difference of 

the number of  the two possible phasings of  si and sj :           and

Haplotype A: 1 0 0

Haplotype B: 0 1 1

1 0 −
1 − 0

− 0 0

0 1 −
− 1 1

0 − 1

Figure 1: A graph of fragment 
conflicts. Vertices correspond to 
fragments and an edge exists between 
two conflicting fragments.

Figure 2: The SNP-fragment matrix M is shown on the left 
containing four fragments and four SNPs. Each SNP’s pairwise 
phasing relationship defined by the fragments is represented on 
the edges of the compass graph on the right. The majority rule 
phasing is shown in red on the edges of  the compass graph.

Our HapCompass Algorithm 1 optimizes MWER by first constructing a 
maximum spanning tree cycle basis and then iterating the following steps 
until the compass graph is happy: (1) select a random conflicting cycle, (2) 
remove the edge with the least amount of evidence, and (3) rebuild the 
cycle basis. In practice we implement a more complex algorithm 
(HapCompass Algorithm 2) that removes multiple edges during each 
iteration using a set cover formulation. In the following results, we consider 
the 1000 Genomes Project sequence data for the NA12878 individual [7].

First, we evaluate whether it is feasible to completely haplotype 
assemble a human chromosome. Figure 3 demonstrates that, with 
the correct configuration of mate-paired reads, only about 10 
million additional reads are required to assemble the majority of 
NA12878’s chromosome 22.

We then evaluate the accuracy of HapCompass with comparisons 
to the two leading haplotype assembly software packages: HapCut 
and the Genome Analysis ToolKits read-backed phasing algorithm 
(GATK). As part of the evaluation, we define the fragment 
mapping phase relationship (FMPR) measure that counts the 
number of pairwise phase relationships defined by the input set of 
fragments that do not exist in the algorithmic haplotype solution. 
Figures 4 and 5 show that the HapCompass solution produces 
more accurate results than HapCut and the GATK for real and 
simulated data. For simulated data, HapCompass also produces 
better results than its competitors under the switch error and edit 
distance measures [4].

Figure 3: Reads of size 100 bp were simulated on 
chromosome 22 of the 1000 Genomes CEU individual 
NA12878. Insert sizes were sampled at random from four 
normal distributions with means between 10kb and 250kb.

Figure 4: A linear regression line is fit to the FMPR results for 
algorithms GATK, HapCut, and HapCompass on chromosome 22 
of the 1000 Genomes data for NA12878. The x-axis is the number 
of SNPs in the haplotype block (that is, the number of vertices in 
the compass graph).

Figure 5: A linear regression line is fit to the FMPR results for 
algorithms GATK, HapCut, and HapCompass on chromosome 22 
of the 1000 Genomes data and 10 million simulated reads for 
NA12878. The additional simulated reads create haplotype blocks of 
unprecedented size.

The Haplotype Assembly Workflow
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aligned to the genome 
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The fragments are encoded as row vectors of SNP alleles in 
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allele, minor allele, or missing data respectively.
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Problem Formulation
Minimum Weighted Edge Removal 

(MWER)

Given a GC, remove a set of edges of 
minimum weight such that GC is 
happy.

SNPs
Example spanning tree of  GC

(1) A non-zero weighted 
e d g e d e f i n e s t h e 
phasing between its two 
SNPs which is given by 
the sign of its weight 
( i . e . m a j o r i t y r u l e 
phasing).  If   w(si,sj) > 0  
then the phasing is 
else if w(si,sj) < 0 then 
the phasing is (2) Unique pairwise 

phasings of edges 
can be extended to 
paths, that is, the 
phasing is transitive 
among the SNPs 
along a path. E.g. the 
path (s6,s5,s3) defines 
the phasing

(4) A conflicting cycle is a 
simple cycle that contains 
either an odd number of 
negative weight edges or at 
least one 0-weight edge or 
both.

( 3 ) A n o n -
c o n f l i c t i n g 
cycle contains an 
even number of 
negative edges 
and no 0-weight 
edges.

Main Theorem: Every spanning tree of 
a compass graph is a happy graph. 
Every spanning tree of a happy 
compass graph has the same unique 
phasing as the compass graph.

(5) A compass graph has a 
unique phasing if and only 
if it has no conflicting 
cycles. We call such a 
compass graph happy. 
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Figure 4.2: Construction of the compass graph from SNP-fragment matrix M . The SNP-fragment
matrix M (left) contains four fragments and four SNPs. Each SNP’s pairwise phasing relationship
defined by the fragments is represented on the edges of the compass graph (right). The majority
rule phasing for one of the haplotypes is shown in red on the compass graph edges.

4.2.2 Minimum weighted edge removal

The minimum weighted edge removal (MWER) optimization problem is defined for a compass graph

GC . Let L ⊂ EC be a subset of edges in GC and let G′C be the resulting graph created from

removing L from EC . MWER aims to compute an L such that the following conditions are satisfied:

(1)
∑
{si,sj}∈L |w(si, sj)| is minimal (cost of removed edges is minimal); (2) all edges in G′C are

decisive; (3) choosing a phasing for each edge in G′C by majority rule gives a unique phasing for G′C .

We call a subgraph of a compass graph that meets conditions (1-3) a happy graph.

The MWER problem for GC aims at constructing the phased haplotypes that are most witnessed

by pairwise phasing information contained in the fragments. Removed edges model the tolerance of

some conflicting evidence. The final phasing for the retained edges is obtained as a consequence of

the global unique phasing of the resulting happy graph.

4.2.3 Properties of the compass graph

We can extend unique pairwise phasings of decisive edges of GC to unique phasings of paths. In other

words, the phasing is transitive among the SNPs along a path. For example, the (s1, s2), (s2, s4)

path in Figure 4.2 corresponds to the concatenation of the 01
10 phasing with the 01

10 phasing, yielding

the 010
101 phasing. An edge of GC is said to be positive (negative) if its weight is positive (negative).
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Lemma 2. There is a unique phasing between two SNPs si and sj if and only if for any two simple

edge-disjoint paths p and q in GC between si and sj, the number of negative edges of p plus the

number of negative edges of q is even, and p and q include no 0-weight edges.

Proof. If there is a unique phasing between two SNPs si and sj then they must be connected in GC .

If there is one path between si and sj then the phasing is unique because this one path induces the

only phasing between the two SNPs. If there is t > 1 paths between si and sj then there exists a

total of
(
t
2

)
pairs of paths. Let p and q be any two paths in the traversal from si to sj . We say that

p and q have k and l edges with negative weight respectively. If k and l are both odd, the phasing

induced between si and sj by both paths is 10
01. Likewise, if k and l are both even, the phasing

induced between si and sj by both paths is 00
11. If k is odd and l is even, p defines the phasing as

10
01 and q defines the phasing as 00

11 (and vice versa in the case of l odd and k even). So if all paths

between si and sj produce a total negative edge traversal count that is even, the induced phasings

cannot conflict. Likewise, if at least one pair of paths produce a total negative edge traversal count

that is odd then at least one pair of paths disagree on the phasings of si and sj . Also, if there

is a unique phasing between two SNPs, no paths include a 0-weight edge by definition. The other

direction follows similarly.

�

Definition 1. A compass graph is happy if it has a unique phasing, that is, for every pair of SNPs

the phasing is unique.

Definition 2. A conflicting cycle in GC is a simple cycle that contains an odd number of negative

edges, at least one 0-weight edge or both. A non-conflicting cycle, is called a concordant cycle and

contains an even number of negative edges and no 0-weight edges.

Corollary 2. A compass graph is happy iff it has no conflicting cycles.

In general an edge may be a member of many conflicting or concordant cycles. A spanning tree

of GC is a connected, undirected subgraph that contains no cycles. There is a unique path between

every two vertices in a spanning tree.

Theorem 1. Every spanning tree of a compass graph is a happy graph. Every spanning tree of a

happy compass graph has the same unique phasing as the compass graph.

Figure 4.3 gives an example of computing a happy compass graph from GC one edge removal

step. Two spanning trees are shown in the happy GC which correspond to the same phasing.
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Figure 4.3: A compass graph GC is shown on the left with two conflicting cycles. One edge removal
(s2, s3) makes GC happy by removing two conflicting cycles in one step. All spanning trees (ST) of
the happy GC correspond to the same phasing but only two are shown in the lower right corner.

4.2.4 Cycle Basis Algorithm

We present two algorithms for the minimum weighted edge removal problem on compass graphs.

Our algorithms are based on optimizations involving constructing cycle bases of connected undirected

weighted subgraphs of GC . The main idea is to consider all simple cycles in an undirected graph

obtained from a cycle basis. In short, we first compute a cycle basis for GC . An efficient algorithm

for generating a cycle basis first constructs a spanning tree T of GC and defines an arbitrary root.

Then, for every non-tree edge e ∈ GC but e /∈ T , we form the cycle of e plus the paths from the

adjacent SNPs of e to their least common ancestor. We add the cycles created by this operation on

non-tree edges to the cycle basis. This spanning tree cycle basis has cardinality |EC | − (|VC | − 1).

Algorithm 1

1. Remove all 0-weight edges from GC . The removal of edges with 0-weight does not affect the

MWER score and can therefore be removed.

2. Construct a maximum (or near maximum) spanning tree T . A maximum weight spanning

tree basis may be preferable, but computing such a basis is NP-hard (Deo, Prabhu, and Krish-

namoorthy 1982).

3. The spanning tree cycle basis is computed in respect to T and cycles are marked as either

conflicting or concordant. Iterate (4-6) until GC is happy:
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4. Select a conflicting cycle at random and remove the edge e with weight closest to 0; this

represents the edge with the least amount of evidence for phasing its SNPs. The removal of e

can either remove a tree or non-tree edge of T .

5. If e is a non-tree edge then T is obviously still a valid spanning tree. If e is a tree edge then

we add the non-tree edge ent into the spanning tree T . After this step we clearly still have

a spanning tree as any path that previously passed through the removed edge e can now pass

through the added edge ent.

6. If e was a tree edge, compute a new cycle basis in respect to T ∪ ent. The addition of the

non-tree edge into the spanning tree T might introduce conflicts in existing concordant cycles

in which case we add these cycles to the set of conflicting cycles. However, in the worst case,

the algorithm will continue to remove edges until GC is a tree which is a valid phasing thus

the algorithm terminates.

7. Output the phasing corresponding to any spanning tree of GC . Report the number of weighted

edges corrected as the score of this phasing (or report the weight of all remaining edges in GC).

Let the |EC | = m, |VC | = n and the number of non-tree edges |EC | − |T | = m− n+ 1.

Lemma 3. Algorithm 1 runs in O(m(m− n+ 1)2 + (m− n+ 1)(m log n)) time.

Proof. The removal of 0-weight edges in step (1) can be done in O(m) time. Step (2) involves

computing a (near) maximum spanning tree which can be done in O(m log n) time. For step (3) we

keep pointers at each vertex pointing to the “parent” node in respect to an arbitrary root vertex.

The algorithm never traverse an edge more than m− n+ 1 times. So this step takes no longer than

O(m(m− n+ 1)). Again, step (4) takes no longer than m(m− n+ 1) time for processing all simple

cycles in respect to T . Step (5) processes one cycle, so, if the cycle being considered is c, then this

operation takes at most |c| time. Step (6) is dominated by O(m log n). For step (7) the algorithm

parses through each edge of GC thus this step takes no more than O(m) time. Because we iterate

through steps (4-6) at most (m−n+ 1) times and m(m−n+ 1) >> |c|, the algorithmic complexity

is O(m(m− n+ 1)2 + (m− n+ 1)(m log n)). �

Algorithm 1 is quite simple and, in practice, we use a more complex algorithm that exploits the

relationship between MWER and set cover.

Algorithm 2
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� We follow steps (1-3) but replace (4) with a step that removes a set of highly conflicting edges.

In the MWER set cover formulation each edge of GC is a set and each conflicting simple cycle

is an element. The simple cycle elements belong to the edge set if the edge is part of that cycle.

We then formulate the problem of resolving the conflicting cycles as finding the set of edges

(sets) of minimum weight such that they cover all of the conflicting simple cycles (elements).

For an example, see Figure 4.4.

� Each conflicting simple cycle will have at least one edge removed, and, removing one or more

edges from a conflicting cycle creates a tree which, due to Lemma 2, is non-conflicting. This,

of course, would be too computationally expensive to formulate for the entire graph so we use

this step on a subset of cycles. This subset is found by selecting the edge that is a member of

the most conflicting cycles (this can easily be logged at the computation of the cycle basis).

� After removing a set of edges, we reconnect T . During the removal of each edge, we find the

non-tree edge whose absolute value of the weight is the largest and add it back into T after all

edges are removed.

� Step (6-7) is computed as before. Because the MWER score is influenced by the order in which

cycles are processed as well as the initial maximum spanning tree, steps (1-7) are iterated many

times and the lowest score is reported as the solution.

Lemma 4. At the end of each step, GS is connected.

Proof. If only one cycle was corrected at a time then the non-tree edge selected for inclusion into

T provides a new path for vertices previously using the removed edge. If more than one cycle was

corrected by the removal of one edge, then paths previously taking the removed edge can now take

any non-tree edge associated with the set of cycles. �

Lemma 4 is critically important because it ensures we do not needlessly separate components

and create haplotype phase uncertainty.

The primary differences between Algorithms 1 and 2 is the local optimization step where Algo-

rithm 2 removes multiple edges using the set cover formulation; this formulation models a sense of

parsimony in that we prefer the removal of edges that resolve multiple conflicting cycles at once.

Lemma 5. If the edge e is shared by k conflicting cycles then the removal of e resolves the k

conflicting cycles.
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Figure 4.4: When deciding which edges to remove, HapCompass considers a set of cycles simulta-
neously. In this example, we consider the {s1, s3, s2} and {s4, s3, s2} cycles from Figure 4.3. Both
cycles are conflicting so we must resolve them. We formulate a set cover with the cycles as the
elements and the edges as the covering set. The minimum set cover is the red set, which corresponds
to removing the edge (s2, s3). The removal of (s2, s3) resolves both conflicting cycles.

Proof. GC has had all edges with 0-weight removed thus each conflicting cycle has an odd number

of negative edges. Let ci and cj be any two of the k conflicting cycles with negative edge counts

of ni and nj . If e is positive then ci and cj form a cycle whose negative edge count is ni + nj .

If e is negative then ci and cj form a cycle whose negative edge count is (ni − 1) + (nj − 1). In

both cases (odd+odd and even+even) a cycle is produced containing an even number of negative

weighted cycles. �

An illustration of Lemma 5 is shown in Figure 4.3. There are two caveats to Lemma 5 that are

due to the complex relationship between sets: (1) the removal of an edge will resolve conflicting

cycles but may change concordant cycles into conflicting and (2) the removal of successive edge

after the first may revert previously resolved conflicting cycles. These issues arise from the set cover

formulation which simply optimizes the sum of the weighted sets and does not consider complex

interactions between sets.

There are several ways to address these caveats. We may consider other properties of the edges in

our minimum weighted set cover formulation. The weight on an edge e corresponds to the confidence

in the pairwise phasing between the two adjacent SNPs of e. Another measure of confidence for

e in GC is the number of conflicting and concordant cycles e is a member of. The weight in the
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minimum weighted set cover formulation can then be computed as a combination of the edge weight

and conflicting/concordant cycle membership. Because the number of conflicting or concordant

cycles an edge is a member of may change with the selection of the first covering set, this minimum

weighted set cover is solved iteratively. However, in practice, we specifically address (1) by breaking

edge-weight ties with the number of conflicting cycles minus the number of concordant cycles and

(2) by not considering shared edges from any of the resolved conflicting cycles in future removal

steps of the same iteration.

Theorem 2. Algorithm 2 is polynomial and terminates with GC a happy graph, i.e., having exactly

one phasing.

Proof. Algorithm 2 retains Algorithm 1’s complexity with additional computation in step (4). The

greedy approximation algorithm for set cover, however, can be computed in linear time in the size

of the sets so Algorithm 2 is clearly polynomial if it terminates. Lemma 5 allows the resolution

of many conflicting cycles at each local optimization step but may also change existing concordant

cycles to conflicting. However, because the graph is connected at the end of each step (Lemma 4)

and we correct |EC | − (|VC | − 1) edges in the worst case, the algorithm clearly terminates. We also

have the property that the final happy graph corresponds to a valid phasing because of Lemma 4.

�

4.2.5 Generalizing the model

The generalized HapCompass model described in this work supports multiple optimizations on com-

pass graphs, joint haplotype assembly of individuals sharing a haplotype tract IBD, and haplotype

assembly of polyploid organisms. To support these algorithmic extensions, we examine key concepts

of the HapCompass model and describe their generalizations.

The core of the HapCompass framework constructs the compass graph GC , a spanning-tree

cycle basis of GC , and then corrects conflicting cycles. One such method for correcting conflicting

cycles was presented in Aguiar and Istrail (2012) where edge weights are used to compute a set

of edges whose removal would eliminate conflicting cycles (the MWER optimization). In principle,

other methods may be used to remove edges, or, entirely new optimizations may be employed,

for example, MEC. Specifically, we implement an algorithm for the MEC optimization on compass

graphs. However, before an implementation of an MEC algorithm on compass graphs can be realized,

the HapCompass framework must be generalized to allow for corrections to fragments.
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4.2.6 Edge weights

The HapCompass framework proposed in Aguiar and Istrail (2012) defines edge weights as the dif-

ference between the number of reads indicating the 00
11 and 01

10 phasings. The generalized model

includes a vector for edge e, ve, consisting of four integers corresponding to the four possible haplo-

types between two SNPs: 00, 01, 10, 11. A function, f(e), maps the vector to a meaningful value

interpreted by the HapCompass algorithm. For example, in the MWER HapCompass algorithm,

fMWER(e) = ve[0] + ve[3] − ve[1] − ve[2] where ve[i] is the count of the phasings 00, 01, 10, 11 for

i = 0, 1, 2, 3 respectively.

4.2.7 An MEC HapCompass optimization

The MEC optimization on GC aims to flip the minimum number of alleles such that all of the

cycles are non-conflicting. The MEC algorithm proceeds by building a spanning tree cycle basis

of the compass graph. The following steps are repeated until each edge is non-conflicting. (1)

For each edge e in the set of conflicting cycles: let v1 and v2 be the two vertices adjacent to e.

(2) If fMWER(e) < 0, we check the fragments that include both v1 and v2, and temporarily flip

the fragment alleles of v1 (v2 in following iteration) to indicate 00
11 phasings. The other alleles in

the fragments cause edges adjacent to v1 (v2) to change weight as well. We record the number of

conflicting cycles resolved and created by checking each cycle in the cycle basis including an edge

that was modified by the flipping of a fragment allele. (3) The case of fMWER(e) > 0 is handled

analogously with the exception of flipping the alleles to indicate 10
01 phasings. (4) Let the number

of conflicting cycles resolved by processing e be ce,r and the number of conflicting cycles created be

ce,c. If max∀e(ce,r − ce,c) ≤ 0, then there does not exist a favorable switching of fragment alleles

and an edge is removed following the MWER algorithm. Otherwise, the fragment changes giving

max∀e(ce,r − ce,c) ≤ 0 are introduced in GC . (5) When all cycles are non-conflicting, we output the

phasing defined by any spanning tree.

The primary data structure change in GC introduces a mapping of edges to fragments. The

primary addition to the HapCompass framework is a definition of optimization function to remove

conflicting cycles from GC .

4.2.8 Identical-by-descent tracts and haplotype assembly

Thus far, the HapCompass framework has only been defined for a single diploid individual. The

generalization of haplotype assembly to multiple genomes must be selective for which individuals to
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assemble jointly. For example, if two individuals do not share a haplotype by descent, one individual’s

set of reads does not provide any information for the other. However, when two individuals do share a

haplotype by descent, the shared haplotype provides phasing information across homozygous sites as

long as one individual remains heterozygous (Figure 4.5). Regions of homozygosity in an individual,

which would otherwise disconnect SNPs and partition haplotype solutions, can be phased together

as long as the jointly assembled genotype has heterozygous SNPs within the interval.

Multiple genotypes

The problem of joint assembly of two individuals who share a haplotype IBD (hereafter referred to

as a pair) is different from jointly assembling two individuals who do not share a haplotype. In the

compass graph, two unrelated genotypes have the effect that both individuals can be heterozygous

but have completely different phasings. However, if they share a haplotype, a transition from a

doubly heterozygous SNP to another doubly heterozygous SNP forces exactly two phasings, namely

00
11 or 01

10 (for example, SNP transitions (1,2) and (4,5) in Figure 4.5). For the doubly heterozygous to

singly heterozygous transitions, we may have exactly three of the four possible 2-SNP haplotypes.

In Figure 4.5, the child’s genotype is 22122 and in order to phase this block using the child’s data

alone, we require a read to cover at least one of the first two SNPs and at least one of the last two

SNPs, which may be impossible depending on the distance between the SNPs and sequence read

insert length. However, if we assemble the parent with the child, we can use the shared haplotype to

decode the parent’s phase across SNPs 2, 3, and 4 to be 000
111. Because they share a haplotype, the 111

haplotype must be the shared haplotype and it can be inferred that the child’s phased haplotypes

are 01110
10101.

Joint haplotype assembly in HapCompass is thus encoded as follows. Each edge now has two sets

of vectors corresponding to the 2-SNP haplotype transitions of the parent and child. For a doubly

heterozygote to doubly heterozygote transition, the weight function can be computed as before using

the coverage from both individuals (because there are exactly two disjoint phasings). For a singly

heterozygote to doubly heterozygote transition (or vice-versa), the weight function can solely use

the heterozygous-heterozygous transmission data from a single individual.

4.2.9 HapCompass-ILP: A combinatorial optimization approach

The minimum weighted edge removal problem aims to compute a set of edges of GC such that the

weight is minimum and there are no conflicting cycles. HapCompass is a fast algorithm optimizing
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Figure 4.5: A graph of the haplotype transitions defined by the majority rule phasings of a compass
graph. SNPs 1, 2, 3, 4, and 5 (left to right) are shown with both alleles (vertices) and edge transitions
are encoded by a specific type of line depending on whether the haplotype is shared IBD or unique
to the child or parent. The genotype of the parent and child are 22222 and 22122 respectively (where
the 2 corresponds to the heterozygote and 0 and 1 correspond to homozygous for the major and
minor alleles respectively).

MWER that appears to compute a solution close to the optimal. We propose to develop a mixed in-

teger program to solve the MWER optimization optimally. Combinatorial optimization approaches

for haplotype assembly are not without precedent. Lippert et al. (2002) and Wang et al. (2005) de-

veloped branch and bound algorithms for optimal inference under the MFR and MEC optimizations

respectively. Guaranteed optimality will enable us to test (1) how close the HapCompass solution

is to optimal and (2) how close the optimal solution is to the actual true haplotypes.

Let x1, ..., xn be integer indicator variables on the set of all edges inGC and w1, ..., wn the absolute

value of their edge weights. For all conflicting simple cycles c1, ..., co of GC define a constraint such

that the sum of all edges in ci are less than or equal to the size of ci− 1. Then the MWER ILP can

be expressed as

minimize

n∑
i=1

wixi

subject to
∑
x∈c

x ≤ |c| − 1, c ∈ C

x integer

In general, there may be exponentially many cycles in a graph and thus an exponential number of

constraints so this approach is only useful for small compass graphs.

4.3 Results

4.3.1 Theoretical

We first present results on the complexity of the MWER optimization, and related minimum weighted

vertex removal (MWVR) problems on the compass graph GC . These results motivate the usage of
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our heuristics for the diploid and polyploid algorithms. Let L ⊂ VC be a subset of vertices in GC

and let G′C be the resulting graph created from removing L from VC . The MWVR optimization

aims to compute an L such that the following conditions are satisfied:

� (1)
∑
{si}∈L |w(si)| is minimal where w(si) is the weight of the ith SNP (cost of removed

vertices is minimal);

� (2) all edges in G′C are decisive (each edge has a majority rule phasing);

� (3) choosing a phasing for each edge in G′C by majority rule gives a unique phasing for G′C .

We omit the straightforward proofs that the MWVR and MWER problems are in NP. It remains

to be shown that known NP-hard problems can be reduced to MWVR and MWER.

We restate the conflict graph generality lemma from Lippert et al. (2002).

Lemma 6. Let G = (V,E) be an arbitrary graph. Then there exists a SNP-fragment matrix M such

that GF (M) = G.

Proof. Introduce a fragment fi for each vertex vi ∈ V . For every two adjacent vertices {vi, vj} ∈ E,

introduce a new SNP column sk in M where fi,k = 0 and fj,k = 1. �

Let M be the SNP-fragment matrix constructed from Lemma 6, GF the corresponding fragment

conflict graph of M , and GC the compass graph of M .

Lemma 7. Every simple cycle of odd length in GF produces exactly one conflicting simple cycle in

GC .

Proof. Let {(f1, f2), (f2, f3), ..., (fk−1, fk), (fk, f1)} be the edges of a simple cycle cs in GF of length

k fragments (vertices). We can partition the fragments into two sets such that each set corresponds

to the haplotypes of the individual. If k is even, then we can partition the even fragments (f2, ..., fk)

and odd fragments (f1, ..., fk−1) into two sets such that each set does not contain internal fragment

conflicts. Likewise, if k is odd, then no such partition exists because fk conflicts with f1 and fk−1.

The function that takes a cycle in GC and computes the number of 01
10 (negative) edges is denoted

neg(). We claim that for k even, neg(cs) is even and for k odd neg(cs) is odd. For this proof we

consider any length k−1 subset of vertices in c and without loss of generality we assume this subset

is v1, ..., vk−1. Consider any two adjacent fragments in this cycle fi and fj such that i < j and they

share the kth SNP. As we iterate through fragments of the cycle, we call the allele that will be paired

with the next fragment the active allele. If (sk, sk+1) < 0 then fj,k+1 = fi,k, that is, the active allele
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that will pair with fj+1 is the same allele as fi,k. However, if (sk, sk+1) > 0 then fj,k+1 6= fi,k, and

the active allele that will pair with fj+1 will be the opposite allele as fi,k. Thus negative edges in

GC do not change the active allele while positive edges in GC flip the active allele from 0 to 1 (or

vice-versa).

Case (1): k even. The v1, ..., vk−1 subset either has an even or odd number of negative pairwise

phase relationships. Case 1.a: Even number of negative pairwise phase relationships; odd number

of positive pairwise phase relationships. The active allele of vk−1 is the same as the active allele

of v1 therefore vk must be induce a positive pairwise phase relationship. Case 1.b: Odd number

of negative pairwise phase relationships; even number of positive pairwise phase relationships. The

active allele of vk−1 is different from the active allele of v1 therefore vk must be induce a negative

pairwise phase relationship. In both cases 1.a and 1.b the total number of negative edges is even.

Case(2): k is odd. Case 2.a: Even number of negative pairwise phase relationships; even number

of positive pairwise phase relationships. The active allele of vk−1 is different from the active allele

of v1 therefore vk must be induce a negative pairwise phase relationship. Case 2.b: Odd number

of negative pairwise phase relationships; odd number of positive pairwise phase relationships. The

active allele of vk−1 is the same as the active allele of v1 therefore vk must be induce a positive

pairwise phase relationship. In both cases 2.a and 2.b the total number of negative edges is odd. �

Lemma 8. Every conflicting simple cycle in GC includes exactly one odd length simple cycle in GF .

Proof. We now interpret conflicting cycles in GC as a set of vertices of GC which define a set of

edges in GF . �

Because of the previous lemma, every conflicting cycle in GC can be resolved by removing an

edge of GF which corresponds to removing a vertex in GC .

Corollary 3. There exists no conflicting cycles in GC if and only if there are no cycles of odd length

in GF .

Lemma 9. Given an M produced from Lemma 6, the compass graph GC(M) is the line graph of

GF (M) with weights of GC as defined by the phasing relationships of the fragments of M .

Proof. The SNPs (columns) of M contain exactly two alleles from two fragments that conflict.

Therefore, in GF , each SNP uniquely defines an edge and in GC each SNP uniquely defines a vertex.

All that remains is to show that every two adjacent edges in GF produce an edge in GC . Consider a

SNP s whose conflicts involve fragments fi and fj . The edge defined by s in GF is adjacent to edges
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defined by the other conflicts of fi and fj . The vertex s in GC is defined exactly as the pairwise

phasing relationships as defined by the SNP s and other SNP alleles in fragments fi and fj which

in turn define the adjacencies in GF . �

Because GC is the line graph of GF , if k simple cycles in GC share an edge then k simple cycles

in GF share a vertex.

Theorem 3. MWVR is NP-hard.

Proof. The reduction is from the problem of removing the minimum number of edges of a graph

to make it bipartite. Let G be an arbitrary graph and M the SNP-fragment matrix as defined in

Lemma 1 which encodes the fragment conflict graph GF = G. GF may contain a number of cycles of

odd length which produce conflicting cycles in the compass graph GC by Lemma 2. Each vertex in

GC corresponds to an edge in GF by Lemma 1. The vertex set solution to the MVR optimization

L yields the minimum number of vertices required to remove all of the conflicting cycles in GC .

Because a graph is bipartite if and only if it contains no odd length cycles and GC is the line graph

of GF , the removal of these vertices corresponds to removal of edges; the minimum of which makes

GF bipartite. �

Theorem 4. MWER is NP-hard.

Proof. The reduction is from the problem of removing the minimum number of edges of a graph

to make it bipartite. Let G be an arbitrary graph and M the SNP-fragment matrix as defined in

Lemma 6. We modify GF (M) by adding two additional degree 2 vertices to each edge, effectively

converting each edge to a length 3 path. Cycles of odd (even) length retain their odd (even) length

thus odd length cycles still create conflicting cycles in GC . All vertices of degree k produce cliques

of size k in GC which do not correspond to any cycles in GF (M). Therefore, we label all edges

of clique vertices produced from a single vertex with weight ∞. All paths of GF will be encoded

with two edges of GC ; both of which cannot be removed in an optimal solution to MWER. Given

a solution to the MWER optimization, we can determine the minimum number of edges in GF to

make it bipartite. �

4.3.2 Experimental

The direct comparison of algorithms for which the same problem optimization is used (e.g. MEC,

MFR, MSR) is straightforward. The algorithm that computes the minimum number of errors to

correct is clearly the winner, for example. However, before haplotype assembly algorithms that
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optimize different formulations can be compared, care must be taken to develop a metric that best

captures the more accurate solution.

Evaluation criteria for haplotype assembly

Before we consider new evaluation metrics that capture the quality of the haplotype assembly, we

address the haplotype switch error metric that has been used previously when the ground truth

is known. The haplotype switch error metric is defined as the number of switches in haplotype

orientation required to reproduce the correct phasing (Lin et al. 2002). It was originally developed

for the haplotype phasing problem and was among the metrics used in the Marchini et al. (2006)

phasing benchmark. Switch error is generally more favorable than pure edit distances for haplotypes

because it more accurately models phase relationship between adjacent SNPs.

This metric was originally developed for haplotype phasing algorithms which operate on the

genotype data of many individuals simultaneously. Haplotype sharing and linkage disequilibrium

are very important quantities for haplotype phasing algorithms as the relationship among adjacent

SNPs allows methods to infer likely haplotypes in the data. In this manner, the switch error

metric accurately captures the close range relationship between adjacent SNP phase. However,

haplotype assembly algorithms operate on much different data and assumptions. Phase relationships

are inferred often from long distance mate pair reads. The switch error metric does not accurately

capture these relationships. Furthermore, if two haplotype assemblies do not produce the same

amount of blocks of haplotypes or otherwise do not agree on where to commit to a particular

phasing, then the switch error becomes biased towards those algorithms that phase less SNPs.

Instead, we suggest using a new metric inspired by genome assembly that captures how well the

haplotype assembly represents the input fragments and can be applied regardless of knowing the

true haplotypes. One of the most meaningful statistics for genome assembly is how many sequence

reads successfully map back to the assembly. We can also slightly modify this metric to ask the

question: “How many of the phase relationships represented by the read fragments are represented

in the assembly?” This fragment mapping phase relationship (FMPR) metric summarizes how well

the haplotype assembly represents the input data.

Let the set of all fragments be F and fi the ith fragment of F . We denote the kth SNP of fi

as fi,k. The haplotypes produced from an algorithm are denoted h1 and h2 and the allele of h1 at

position k is denoted h1,k (h2,k is defined similarly). Then the fragment mapping phase relationship
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metric can be described as

∑
fi∈F

∑
fi,j ,fi,k∈fi|j 6=k

min (1(fi,j , fi,k, h1), 1(fi,j , fi,k, h2))

where 1() is a function that takes two SNP alleles and a haplotype and determines whether the

phase relationship between the two alleles exists in the haplotype; formally, 1(fi,j , fi,k, h1) = 1 if

(fi,j 6= ’–’ ∧ fi,k 6= ’–’) ∧ (fi,j 6= h1,j ∧ fi,k 6= h1,k) and 1(fi,j , fi,k, h1) = 0 otherwise. This metric is

computed by counting all of the pairwise phase relationships defined by the input set of fragments

that do not exist in the solution. One fortunate side effect of this metric is that an algorithm

that produces smaller blocks will be penalized. For instance, if an algorithm produces a haplotype

assembly for five disjoint blocks when fragments exist in the data that connect every SNP in one

large block, the switch error metric will not penalize the unknown phase between blocks. However,

the fragment mapping metric will capture the phase ambiguity error that exists between disjoint

blocks if the input fragments do indeed suggest they should be connected. We also define the

Boolean fragment mapping (BFM) metric which counts the percentage of fragments that map to

the resolved haplotypes with at least one error. The third evaluation criteria we use is the minimum

error correction (MEC) measure which counts the number of allele flips in the fragments required

to produce the phased haplotype assembly solution. In all previously described measures, lower

values are desired. These metrics are similar to read mapping metrics in genome and transcriptome

assembly, where good quality assemblies will allow for many reads to map back to them.

A pilot study

We first evaluate the number of reads that must supplement the current high coverage 1000 genomes

data (The 1000 Genomes Project Consortium 2010) for the NA12878 CEU individual in order to

achieve a complete haplotype assembly of chromosome 22. To do this, we supplemented the 454,

Illumina, and SOLiD sequence data with simulated Illumina reads. The starting point of each

simulated read was generated at random from the set of bases that were sampled by real sequence

reads. Illumina-sized reads were simulated using varying distributions for insert size. Figure 4.6

shows a least squares fitted curve to the largest component (or block) sizes for various coverages

in chromosome 22. Disconnected components of GC must be phased separately and the haplotype

phase between them is ambiguous; therefore, the largest component size gives an indication of the

connectedness of GC and the size of the maximum achievable phased haplotype.

We then evaluated each algorithm using the aforementioned metrics for the Illumina, SOLiD,
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Figure 4.6: In this simulation study, reads of size 100bp were simulated on chromosome 22 of the
1000 genomes CEU individual NA12878. Mate pair lengths were sampled at random from one of
four normal distribution with means [10kb, 50kb, 100kb, 250kb] and standard deviations [1kb, 5kb,
10kb, 25kb]. With these parameters for sequencing, we require about 10 million reads to connect
most of the SNPs of GC .
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block size no. frag-
ments

HapCut
FMPR
(BFM %)

GATK
FMPR
(BFM %)

HC FMPR
(BFM %)

51 477 223 (13.8) 60 (8.4) 23 (1.9)
53 581 265 (11) 30 (2.9) 25 (2.4)
53 551 71 (7.1) 23 (2.9) 9 (1.3)
58 626 209 (11) 12 (1.4) 12 (1.4)
60 645 199 (10.1) 54 (3.9) 43 (3.1)
60 467 28 (4.7) 18 (3) 4 (0.86)
62 393 24 (4.5) 14 (3.1) 6 (1.5)
62 528 126 (10.6) 16 (2.5) 8 (1.3)
63 770 45 (3.8) 24 (2.2) 19 (1.7)
66 602 91 (5.6) 31 (3.7) 11 (1.5)
66 718 452 (14.6) 47 (3.3) 28 (2.1)
79 877 245 (10.1) 26 (2.1) 8 (0.8)
102 949 212 (8.7) 48 (2.7) 37 (1.9)
166 1914 207 (5.9) 83 (2.7) 44 (1.5)
Total
FMPR

- 2397 486 277

Table 4.1: HapCut, GATK, and HapCompass (HC) were evaluated according to the fragment map-
ping phase relationship and Boolean fragment mapping metrics for 1000 genomes data chromosome
22 of individual NA12878. The block size is the number of SNPs in the component of GC and no.
fragments denotes how many read fragments were used for assembly. Bold cells denote the algorithm
with the best score.

and 454 reads generated for the CEU individual NA12878 in the 1000 genomes data (Table 4.1).

Because each sequencing technology produces reads with similar insert sizes, the real data block sizes

are small. For these block sizes, HapCompass produces the best results with GATK also producing

very accurate haplotype assemblies.

Simulated data

Limitations in current sequencing technologies restrict the number of SNPs one can hope to phase

from the sequence reads. Many factors influence the connectedness of GC but the most influential

factor is the mean sizes and variance of the inserts used to generate the paired reads (Halldorsson,

Aguiar, and Istrail 2011). This is less of a concern for whole-exome data where haplotype assemblies

can be constructed rather easily with high coverage. However, in order to test the algorithms on

their capability to provide genome-wide haplotype assemblies in terms of both accuracy and time

efficiency, we simulated two datasets of 10 million 100 bp reads and varied the error parameter. The

10 million reads parameter is guided by the data generated for Figure 4.6 and will vary depending on

read length, insert size distributions, coverage and genome allele structure (e.g. runs of homozygosity

that are longer than the insert size will disconnect components of GC).
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block size no. frag-
ments

HapCut
FMPR
(BFM %)

GATK
FMPR
(BFM %)

HC FMPR
(BFM %)

580 2268 355 (13.8) 703 (28.2) 284 (11.4)
1331 4023 647 (14.5) 1236 (28.7) 441 (10.1)
1598 6545 1182 (15.5) 2011 (27.6) 1033 (13.9)
1835 6962 1212 (14.8) 2235 (28.8) 1089 (13.8)
3193 15036 3416 (17.7) 5237 (30) 2746 (15.7)
4153 17862 3642 (16.6) - (-) 2719 (13.2)

Table 4.2: HapCut, GATK, and HapCompass (HC) were evaluated according to the fragment map-
ping phase relationship and Boolean fragment mapping metrics for 1000 genomes data chromosome
22 of individual NA12878 and 10 million simulated reads with error rate = 0.05 and read length =
100. A dash (-) mark denotes the algorithm did not finish using the allotted resources. Bold cells
denote the algorithm with the best score.

Because the NA12878 individual is the child of a CEU trio who were also sequenced, we used

the parents to phase most of the SNPs; a random phasing was selected for SNPs that were triply

heterozygous. Using this method, we are able to construct a set of haplotypes to simulated reads from

that are as close to the ground truth as possible with the available data. Our principle measurements

of accuracy are FMPR and BFM. First we tested each algorithm on simulated data with moderately

high error rates (0.05).

We can summarize the trends in Tables 4.1 and 4.2 by fitting a linear least squares regression

line to the data (Figure 4.7).

It is clear from Figure 4.7 that HapCompass produces the best results. HapCut seems to produce

better results than GATK on larger haplotype blocks (the reverse was true for the small haplotype

blocks from real data). When considering serial execution, the processing times for HapCut and

HapCompass were similar. For instance, for the simulated component of size 4177, 25 iterations

of HapCut took 3.7 hours while 25 iterations of HapCompass took 4.8 hours. However, iterations

of the HapCompass algorithm are independent and can be trivially parallelized. When this is the

case, the solution with the smallest MWER score is retained as the overall solution. HapCut and

HapCompass both used less than 2 gigabytes of memory while GATK required a great deal more

memory and processing time for similar sized components. Each algorithm was terminated if it

required more than 12 hours of processing time or 8 gigabytes of heap space.

Even though switch error has an unclear interpretation on haplotype assembly data, we show that

switch error produces the same algorithmic rankings. Switch error is as defined before but we incur a

penalty of 1 for each haplotype block reported beyond the first. Because we compare each algorithm

to a connected haplotype block – in the sense that there is a path between every SNP in GC –
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Figure 4.7: We fit a linear least squares regression line to the FMPR measurement for algorithms
Genome Analysis ToolKit (GATK), HapCut, and HapCompass on chromosome 22 of the (Top)
1000 Genomes data for the NA12878 individual (Table 4.1) and (Bottom) 1000 genomes data for
the NA12878 individual with 10 million simulated reads of length 100 with sequence base error rate
of 0.05 (Table 4.2).
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block size no. frag-
ments

HapCut SE GATK SE HC SE

580 2268 197 259 148
1331 4023 544 581 329
1598 6545 604 654 474
1835 6962 694 766 563
3193 15036 1092 1287 859
4153 17862 1630 - 1007

Table 4.3: Switch error (SE) measurements for HapCut, GATK, and HapCompass (HC) for the
same data as Table 4.2. A dash (-) mark denotes the algorithm did not finish using the allotted
resources. Bold cells denote the algorithm with the best score.

block size no. frag-
ments

HapCut
FMPR
(BFM %)

GATK
FMPR
(BFM %)

HC FMPR
(BFM %)

578 2326 180 (6.6) 650 (25.5) 46 (1.7)
1852 7234 888 (10.7) 1896 (23.7) 207 (2.5)
4177 17953 2088 (9.3) - (-) 425 (2)

Table 4.4: HapCut, GATK, and HapCompass (HC) were evaluated according to the fragment map-
ping phase relationship and Boolean fragment mapping metrics for 1000 genomes data chromosome
22 of individual NA12878 and 10 million simulated reads with error rate = 0.01 and read length =
100. A dash (-) mark denotes the algorithm did not finish using the allotted resources. Bold cells
denote the algorithm with the best score.

reporting more than one phasing represents a switch error between phased components. The switch

error metric gives the same relative ranking of algorithm performance (Table 4.3). We only show

these results for completeness and do not recommend using switch error as the sole measurement of

haplotype assembly algorithm accuracy.

We then reduced the error rate to evaluate the behavior of each algorithm on higher quality

data. Table 4.4 again demonstrates that HapCompass remains significantly better than HapCut

and GATK.

We also evaluate the HapCompass MEC and HapCompass IBD algorithms using 1000 Genomes

Project (Siva 2008), Pacific Biosciences, and simulated data.

IBD haplotype assembly

Jointly assembling the haplotypes of related individuals has considerable benefits. The first benefit

comes from the extra coverage on the shared haplotype which helps with differentiating true phasings

from sequencing errors. However, the most notable advantage is being able to extend phasing

past homozygous blocks. We compared the size of the phased haplotype blocks when assembling

chromosome 22 of the NA12878 child in the 1000 Genomes Project data alone versus jointly with the

67



mother. Figure 4.8 compares the maximum achievable haplotype block sizes of any single individual

haplotype assembly algorithm to IBD haplotype assembly; it demonstrates that larger haplotype

blocks are achievable by assembling two individuals with a shared haplotype together rather than

separately.
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Figure 4.8: Comparison between haplotype assembling the child individually versus with a parent.
The haplotype size is number of SNPs in the component of GC which represents the maximum
number of SNPs that may be phased together.

Pacific Biosciences Data

Single molecule sequencing has great potential to become a preferred method for haplotype as-

sembly but current algorithmic techniques are untested on data with very high error rates. We

downloaded the chromosome 20 data from individuals HG00321, HG00577, HG01101, NA18861,

NA19313, NA19740, NA20296, and NA20800 (Broad Institute HapMap Pacific Biosciences Data 15

January 2013). Haplotype assembly solutions were produced by HapCompass, Levy et al. (2007),

and HapCUT to obtain the results in Table 4.5 (run times can be found in Table 4.3.2). HapCom-

pass outperforms the competition in terms of MEC using both optimizations. Interestingly, the

Levy et al. (2007) algorithm is the most accurate in terms of FMPR and BFM. This is likely due to

the Levy et al. (2007) algorithm processing entire read fragments each iteration while HapCompass
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focuses on correcting multiple fragments at adjacent SNPs. Because the Pacific Biosciences read

lengths are long (several kb), more emphasis is placed on matching reads with large overlaps on the

same haplotype. This result further suggests that it is important to consider the input data and the

desired results when preparing data for a haplotype assembly experiment.

HapCom-
pass

MWER

HapCom-
pass
MEC

Levy HapCUT

FMPR 163799 169385 153433 169890

BFM 39827 40470 38318 41006

MEC 48631 49591 66299 50164

Table 4.5: The total FMPR, BFM, and MEC scores aggregated across individuals HG00321,
HG00577, HG01101, NA18861, NA19313, NA19740, NA20296, and NA20800 in the Pacific Bio-
sciences data.

HapCompass MWER HapCompass MEC HapCUT Levy
avg. time (s) 10 10.8 13.6 19.3

avg. memory (MB) 1251 1489 43.2 1049

Table 4.6: Average resource requirements for PacBio haplotype assembly runs. The HapCompass
software is not optimized for minimal memory usage which is exemplified in the memory requirement
results of the Levy et al. (2007) algorithm. This algorithm is implemented within the HapCompass
software and should have a very small fingerprint but requires about a gigabyte of memory. Reducing
the input fragment set into a secondary format prior to haplotype assembly (HapCUT does this)
reduces our memory footprint by a factor of 10-100 times.

1000 Genomes Project Data

To further evaluate the HapCompass MEC implementation, we haplotype assembled the genome

of 1000 Genomes Project NA12878 CEU child using our implementation of the Levy et al. (2007)

method, HapCUT (v0.5), and the HapCompass MWER and MEC algorithms. Table 4.7 shows that

the HapCompass MWER algorithm clearly performs best overall. Surprisingly, even though the

MWER algorithm does not directly optimize the MEC measure, it produces the best haplotypes in

respect to this measure for all but two chromosomes.
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Chapter 5

Polyploid and Tumor Genomes

5.1 Introduction

5.1.1 Polyploidy

The research literature concerning polyploid haplotype assembly is essentially non-existent. The

analysis of k -ploid genomes (k sets of chromosomes) has been hindered by the complexity of se-

quencing and assembling k chromosomes concurrently. With high-throughput sequencing technolo-

gies, genotype inference in polyploid organisms is manageable; sequence reads are mapped to a

reference genome, and the relative quantities of alleles at a SNP can be inferred from sequence cov-

erage. However, the basic assumption that there exists exactly two phasing between two SNPs no

longer holds. We note that the polyploidy assembly problem is similar to a number of problems in

other areas of haplotype reconstruction (when the number of haplotypes is known or unknown) such

as modeling metagenomics (organism identification), HIV (viral quasispecies identification in the

“metagenome” of patients), cancer (tumor and plasma), and epigenetics (regulatory region methy-

lation reconstruction similar to “probabilistic haplotype” inference).

5.1.2 Cancer

Cancer is the world wide leading cause of death and the second leading cause of death in the

United States. Despite the tremendous amount of effort and resources spent on cancer research,

our knowledge of the disease pathology and treatments is limited and the outlooks for certain types

of cancer are usually ominous. The commercialization of high-throughput sequencing platforms in

the last decade has accelerated the growth of cancer genomics research dramatically. Since the first
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whole genome tumor sample was sequenced in 2008 (Ley, Mardis, et al. 2008), there have been

hundreds of studies on numerous cancer types (Mardis 2012; Meyerson, Gabriel, and Getz 2010;

Pleasance et al. 2010; The Cancer Genome Atlas 2012). One of the fundamental computational

challenges common to many of these studies is to separate the true driver mutation signal from the

biological noise (e.g. passenger mutations) and experimental noise (e.g. sequencing errors). While

it is possible to map sequence reads from tumor samples to a reference genome and call genomic

variants, it is exceedingly difficult to determine the parental chromosome of origin for each variant

allele – that is, the variant’s phase. But, haplotypes are important for elucidating genomic events

critical to the understanding of cancer like gene fusions or driver mutations.

A theory for carcinogenesis formulated by Knudson in 1971 demonstrates the importance of

haplotype phase in cancer (Knudson 1971). In the two-hit hypothesis, Knudson suggested that in

order to cause cancer, at least two “hits” have to take place. The first “hit” is usually an inherited

mutation, and the second “hit” is a somatic mutation in the same gene or a different gene in the same

pathway occurring later in life and out of phase with the first mutation. The ability to compute the

haplotype phase of the tumor genome would enable the discovery of such compound heterozygous

relationships between variants and enhance our ability to identify driver mutations.

Tumor genomes have many similarities with polyploid genomes but present additional complex-

ities that current methodologies do not model. Sequencing reads sampled from cancer patients

exhibit a mixture of normal diploid cells and heavily rearranged, aneuploid cells. This introduces

two major complexities into the haplotype assembly model: (1) heavily rearranged or translocated

chromosomes will exhibit changes in copy number and (2) the heterogeneous nature of tumor sam-

ples requires reconstruction of more than two haplotypes each with a sample frequency which biases

sequence read coverage.

5.1.3 Inferring variation

Before these complexities can be modeled, the spectrum of variation must be inferred. While early

cancer research was focused on small variants such as single nucleotide variants (SNV) and indels

(insertions and deletions) in a single gene or a small set of genes, advances in technology have enabled

us to study large structural variants such as copy number aberrations (CNAs) and large chromosomal

rearrangements in tumor genomes. Several recent studies on multiple tumor genomes have found

the important role of these large structural variants in tumor development (Ding, Ellis, et al. 2010;

Lee, Jiang, et al. 2010; Meyerson, Gabriel, and Getz 2010; The Cancer Genome Atlas 2012). In
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general, detection of cancer variation with sequencing data involves detecting those variants that are

supported in the tumor genome but not found in the normal genome. The algorithms can be largely

divided into three categories determined by the variant type they are trying to detect, i.e. small

variants (SNVs and indels), CNAs and complex structural variants (translocations, duplications and

inversions).

Strelka jointly models the normal sample as a mixture of germline variation with noise, and the

tumor sample as a mixture of the normal sample with somatic mutations, in a Bayesian frame-

work (Saunders et al. 2012). One advantage of Strelka is that it does local realignment on both

tumor and normal reads together to avoid undercalls that lead to false positive results. VarScan

2 also uses the sequence reads from tumor and normal cells simultaneously, but uses a one tailed

Fisher’s exact test to determine whether the variants are somatic, normal, or loss of heterozygosity

(LOH) (Koboldt et al. 2012). Control-FREEC not only uses the coverage information, but also the

read count frequencies, to estimate copy numbers in tumor (Boeva et al. 2011). It also normalizes

the tumor read depths by GC content and mappability and hence a normal genome is not required,

although it could also be used for normalization.

Detection of large structural variations is often made possible by exploiting the properties of pair-

end reads. For example, the insert sizes of reads that are mapped to both sides of a large deletion

would appear to have much larger insert sizes than the rest of the population. CREST first looks

for a cluster of soft-clipped reads that showed the evidence of a break point for a structural variant,

then locates the other break point by scanning the location neighboring the paired read (Wang et al.

2011). However, the accuracy of these methods can be seriously affected when there is contamination

in the samples. Contamination between individuals would lead to false positive results. Cibulskis

et al developed a Bayesian model to estimate the level of cross-individual contamination in each

sample (Cibulskis et al. 2011). There may also exist contamination within an individual: tumor

tissue may be contaminated with normal DNA and vice versa. Both incorrect variant calling as well

as sequence contamination represent potential sources of errors in the assembled haplotypes.

5.2 Modeling polyploid and tumor genomes

For any particular sample of tumor tissue or polyploid genome, there exists some integer k that

represents the number of unique haplotypes to be assembled. In the case of an actively evolving

tumor genome, this k may vary for independent samples of the same tumor. While sequence reads

sampled from a tumor or polyploid genome may originate from any of the k haplotypes, we assume
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Figure 5.1: An example GC for a tumor or polyploid sample with three unique haplotypes. Vertices
are variants and edge show the haplotype phasing between pairs of variants.
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sequence reads are sampled from haploid fragments. This property allows the building of phase

relationships between alleles in sequence reads that contain two or more heterozygous variants (ho-

mozygous variants do not provide phase information for assembly). The input sequence reads and

variants are modeled with two graph structures termed the compass graph, GC , and chain graph,

Gh.

Similar in the diploid case, let the compass graph GC(VC , EC) have v ∈ VC for each input variant

and (vi, vj) ∈ EC if variants vi and vj are contained within a sequence read. The edges (vi, vj) are

annotated with the weight (probability) and haplotype strings of the most likely haplotype phasing

between the variants vi and vj (figure 5.1).

5.2.1 Uniqueness and disjoint phasings

One difficulty of polyploid and tumor haplotype assembly emerges from the non-disjointness of

phasing solutions between SNPs. With the assumption that SNPs are biallelic, at least one haplotype

will be shared by two or more phasings between two SNPs. In the diploid case, a read suggesting the

00 phasing could be interpreted as evidence for 11 on the other haplotype (uniqueness of phasing)

and also evidence contradicting the 01
10 phasing (disjointness of haplotypes in phasing solutions). In

the tetraploid case, for example, if the genotype for each of 2 SNPs is {0, 0, 1, 1} then there exists

three possible haplotype phasings: (00, 00, 11, 11), (01, 01, 10, 10), (00, 01, 10, 11).

In general, the number of haplotype phasings on an edge is a function of the ploidy of the

organism and the alleles at each SNP. As in the diploid case, each SNP must have at least one of

each allele or else the SNP is homozygous and sequence observations of an allele do not provide any

phasing information. As a result, every 2-SNP haplotype includes either 00
11 or 01

10.

However, unlike in the diploid case, the extension from one edge in GC to the next may not be

deterministic. For example, in diploid assembly, if a reads suggest a 00
11 phasing for SNPs 1 and 2,

and a 00
11 phasing for SNPs 2 and 3, the extension would give us a phasing of 000

111. A conflicting cycle

in GC could then be generated if reads connecting SNPs 1 and 3 disagreed with this phasing. For

the polyploid case, if the genotypes for each of SNP 1 and 2 are (0, 0, 1), then both the (00, 00, 11)

phasing and (00, 01, 10) phasing are valid. Assume that we can compute the phasings between

SNPs 1 and 2 and SNPs 2 and 3 to be (00, 00, 11); we can extend as we did in the diploid case to

create the phasing (000, 000, 111). Then, if a read suggests a 01 phasing between SNPs 1 and 3, we

again generate a conflicting cycle. However, if the SNPs were phased using (00, 01, 10) for SNPs 1,2

and 2,3, then either phasing (000, 010, 101) or (001, 010, 100) is possible. Both are completely valid
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phasings consistent with the genotype and read data but fragments connecting SNPs 1 and 3 may

constrain the phasing solution to be unique.

5.2.2 Polyploid edge decidability

The polyploid and tumor HapCompass model retains the axiom that each edge is decidable; that

is, each edge has a unique and computable phasing as defined by the reads. The compass graph

and spanning tree cycle basis is built from the input genotypes and reads as before. The distribu-

tion of haplotype configurations between two SNPs are defined by the genotypes, and a singular

configuration is computed using the available read data. The first approach attempts to assign

reads into haplotype bins that represent the haplotype distribution for a valid phasing between two

SNPs. Given a 2-SNP genotype, a binning is an assignment of reads to haplotypes. For example,

if two SNPs both had two 0 alleles and two 1 alleles, there would exist three haplotype phasings:

(00, 00, 11, 11), (01, 10, 11, 00), (01, 10, 01, 10), each with 4 bins. The phasing (00, 00, 11, 11), for

instance, would contain two 00 bins and two 11 bins.

5.2.3 Binning algorithms

Greedy binning algorithm

Input: a maximum distance d between any two bins, a set of haplotype phasings P , and a set of

reads R. Output: the haplotype phasing most supported by the reads.

1. For each haplotype phasing p ∈ P

2. For each haplotype bin b ∈ p, do steps (3-5).

3. Loop through steps (4-5) until all read fragments have been assigned.

4. Select a read r ∈ R such that the edit distance between r and an available haplotype bin h ∈ b

is minimal.

5. Place r in the selected bin h and remove this read from the read set.

6. Report the haplotype phasing with the binning of minimum total edit distance as the optimal

phasing.

We enforce that the difference of haplotypes in each bin must be at most d haplotypes to avoid always

preferring diverse haplotype phasings (e.g. (10, 10, 01, 01) vs. (00, 11, 10, 01)). This condition defines

which haplotype bin is available during each iteration.
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Probabilistic binning algorithm.

Alternatively, probabilities of each phasing given the set of reads can be computed and uncertainty

can be accounted for when extending phase to adjacent edges. In particular, we wish to compute

the likelihood of a phasing given the set of input sequence reads. Let pi be the ith phasing for two

adjacent SNPs, P the set of all possible phasings for the two SNPs, rj be the jth read, and se the

probability of a sequencing error. Then, the likelihood of a particular phasing pp is

L(pp|se, r1, r2, ..., rn) =
P (r1, r2, ..., rn|se, pp)∑|P |
i=1 P (r1, r2, ..., rn|se, pi)

(5.1)

=
P (r1|se, pp) · P (r2|se, pp) · · ·P (rn|se, pp)∑|P |

i=1 P (r1, r2, ..., rn|se, pi)

which may be computed using the assumption that sequence reads are independent. The prob-

ability of a read ri given sequencing error se and phasing p can be computed by marginalizing over

all possible haplotypes h sampled for phasing p:

∑
h∈b

p(h|se, p) · p(ri|se, h, p) (5.2)

Thus, the edge is decisive for the haplotype phasing with the maximum likelihood for all reads that

span the two SNPs. The original diploid scoring scheme can be recreated with a manipulation of

the unnormalized phasing likelihoods:
∑n

i=1 P (ri|se = 0, h =11
00)−

∑n
i=1 P (ri|se = 0, h =10

01).

This likelihood models haplotypes which are in equal proportion which is not necessarily the

case in heterogeneous tumor samples. Thus the likelihood must be altered to accommodate the

different frequencies of haplotypes we often observe in cancer samples. For example, a certain level

of contamination from normal haplotypes is expected to be present in tumor sequence samples.

Because the number of germline mutations is much larger than the number of somatic mutations

and tumor haplotypes are derived from normal haplotypes, it is difficult to determine the origin

of sequence reads by examining each read independently. We can model contamination by jointly

assembling the k tumor haplotypes with two low frequency normal haplotypes. Therefore, the

probability of a haplotype h with frequency fh in the phased haplotypes of a pair of variants p can

be expressed as p(h|se, p) =
∑

h∈p fhF (se, p, h) where F is a function that takes the sequencing error

probability se, the set of all haplotypes for the two variant phasing p and the particular haplotype

h and computes the probability of generating a read containing haplotype h.
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For example, assume the three haplotypes 00, 00, and 11 exist between two variants and one of

the 00 haplotypes was considered contamination at frequency 10%. If the other two haplotypes were

in equal proportions, then

p(00|se, {00, 00, 11})F (se, {00, 00, 11}, 00) = (1− se)2 · 0.1 + (1− se)2 · 0.45 + (se)
2 · 0.45 (5.3)

The number of unique phasings of an edge depends on the number of unique tumor haplotypes

in the sample and the allele content of the variant pair. Let the number of 1 alleles for variants vi

and vj be 1(vi) and 1(vj) respectively, and the number of unique tumor haplotypes be k. Then, the

number of possible phasings of an edge is upper bounded by
(

k
1(vi)

)
·
(

k
1(v2)

)
. This is a bound and not

equality because a small number of these configurations are not allowed for heterozygous variants

(for example, if 1(vi) = k).

5.2.4 Conflicting cycles and phase extensions

Both the greedy and probabilistic binning algorithms decide the haplotype phase of edges. In the

diploid case, the extension of phasings from edges to paths was unambiguous because for each of the

two phasings, exactly one haplotype begins with 0 (or 1) and exactly one haplotype ends with 0 (or

1). Therefore, the computation of phasings for paths and conflicting cycles was easily determined

given the decided edges. In polyploid and tumor genomes, each SNP variant in GC is still assumed

to have only two possible alleles but each edge has three or more haplotypes. When extending phase

from one edge to an adjacent edge, the haplotypes on different edges that share an allele can be used

for extending phase. If this allele is present in k haplotypes, then there are k! possible extensions.

5.2.5 Phase extension algorithm

We introduce the chain graph Gh which is defined on a path or cycle in GC for a k-ploid genome

or tumor sample with k haplotypes. Let (e1, e2, ..., el) = p denote a path of edges in GC of length l.

Each edge ei is phased (by the greedy or probabilistic method) and each haplotype in the phasing

introduces a vertex in Gh at level i. Thus, Gh contains k vertices for each ei ∈ p and a total of

l · k vertices in total. Two haplotype vertices are connected by an edge if and only if they share a

SNP position and allele. Because haplotypes at adjacent levels uniquely share a SNP position in

Gh, edges only exist between adjacent levels and a path through the chain graph corresponds to a

joining (or extension) of haplotypes. Therefore, there is always a valid phasing for a Gh defined on

a path of GC .
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Figure 5.2: Compass graphs GC,g, a non conflicting polyploid cycle (left), and GC,c, a conflicting
polyploid cycle (right). The vector on the edge corresponds to the haplotype counts for an edge in
the format: [00,01,10,11]. In both compass graphs the haplotypes are 000, 000, and 111 while the
reads in GC,g are 000, 000, and 111 and the reads in GC,c are 00−, 01−, 10−, −00, −00, −11, 0− 0,
0− 0, and 1− 1

Cycles introduce complexity in Gh. Gh defined on a cycle retains the characteristics of the

path chain graph, but also includes source and sink nodes: s1, ..., sk and t1, ..., tk respectively. Let

(e1, e2, ..., el, e1) = p denote any path of edges in GC of length l with the addition of the (el, e1)

edge. Source nodes are connected arbitrarily to haplotypes on level 1 but haplotypes on level l are

only connected to sink nodes if the shared variant position agrees with the haplotype the source

was connected to; for example, in Figure 5.3 Top, t2 is connected to both 00 haplotypes at level l

because s2 is connected to a haplotype starting with 0. The sources and sinks represent the (el, e1)

edge and a path from si to ti represents one valid haplotype. This intuition enables the formulation

of the k vertex disjoint paths problem on chain graphs. If there exists k vertex disjoint, si to ti

paths for i = 1, ..., k, we have k valid phasings for the cycle; otherwise, the cycle is conflicting and

there is no valid phasing.

To further build intuition, consider a conflicting cycle of GC and Gh in the diploid case. A cycle

was conflicting if the number of negative weighted edges in GC was odd. Relating this to the chain

graph Gh, an si node would be connected to a 0 (or 1) and each negative edge would flip the next

bit. So, a conflicting cycle has an odd number of negative edges which translates into an odd number

of bit flips resulting in no si to ti path for i = 1, 2. Figure 5.2 gives an example of non-conflicting

and conflicting cycles in polyploid compass graphs and Figure 5.3 their chain graphs.

Gh enables the (1) determination of conflicting cycles and (2) computation of the phased hap-

lotypes for a path or cycle using disjoint paths. The k-disjoint paths problem is a well studied

optimization in the field of discrete mathematics (Robertson and Seymour 1995). A polynomial-

time solution is known to exist for the node disjoint paths problem when k is known as part of the

input but these algorithms require manipulation of enormous constants rendering them difficult to
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Figure 5.3: The chain graphs (top) Gh,g and (bottom) Gh,c corresponding to GC,g and GC,c respec-
tively.

implement in practical settings (Kawarabayashi, Kobayashi, and Reed 2012; Robertson and Seymour

1995). Fortunately, the structure of Gh enables a much more efficient solution to the problem.

5.2.6 Disjoint siti paths in the trellis graph Gh

We now present new results on the theoretical properties of this graph and extensions to phasing

the entire compass graph. A valid phasing of a path of compass graph edges e1,2, ..., es−1,s is defined

as k vertex-disjoint paths from level 1 to level s. A valid phasing of a cycle of compass graph edges

e1,2, ..., es,1 is defined as k vertex-disjoint paths from each source si to its corresponding sink ti.

There always exists at least one phasing for paths of GC by definition of Gh; cycles may not exhibit

a valid phasing.

Lemma 10. There exists at least one valid phasing of k haplotypes for a cycle c if and only if there

exists a valid matching between sink node annotation and chain graph nodes at each level of Gc.

Proof. If: Adjacent edges share a variant and thus the number of x alleles at level i must equal the

number of x alleles at level i+ 1 where x is any allele of the shared variant. If there is a matching at

level i and i + 1, then there must exist an edge between valid haplotype phase nodes because they

share a common allele (adjacent levels). One can extend a valid haplotype phasing path from level

i to i + 1 using the edge generated by the shared allele. Only-if: Assume one level does not have
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a valid matching; then, either (1) at least two haplotypes share a phased haplotype node or (2) at

least one phased haplotype nodes contain no sink node annotation. Case (1): multiple haplotype

paths must share a phased haplotype node which breaks the vertex disjointness condition. Case (2):

each level has exactly k nodes each of which must be taken once. If > 0 phased haplotype nodes

contain no sink annotation, then by the pigeonhole principle at least one phased haplotype node

must be shared by 2 or more haplotype paths. �

We will use this property of Gh later in the computation of the tumor haplotype phasing.

All paths from si to ti can be computed by a modified depth first search algorithm. A depth

first search is started from each source si and the path from source to the current node is stored.

Each node contains a list of integers initially empty. When the algorithm either encounters the sink

node ti, or a node already labeled with i, all nodes on the current path have i added to their list.

After each source-sink pair is processed, each node contains a label i if there is an si to ti path that

includes the node. The runtime of this algorithm is O(kve) where k is the ploidy, and v and e are

the number of vertices and edges in Gh respectively.

After all nodes are labeled, we iterate through each level of Gh and create an auxiliary flow graph

Gl
h where l is the level. Gl

h defines a bipartite graph where one set of vertices corresponds to the

source haplotype paths which are connected to a set of vertices corresponding to the haplotypes of

the phasing level l. A flow in Gl
h of total value k where each edge has capacity 1 corresponds to a

maximum matching and thus a valid assignment of haplotype paths to haplotypes of the phasing

at level l. This flow can be found in time linear in the size of the edge set of Gl
h. If every level of

the chain graph has a valid bijection, then the cycle is non-conflicting and the path given by the

matchings define a valid phasing. Figure 5.4 give an example of the auxiliary flow graphs for level

1 of the chain graphs defined in Figure 5.3.

5.2.7 Copy number aberrations and translocations in Gh

The chain graph and disjoint path framework accommodates modeling the types of variation typical

of cancer genomes (Figure 5.2.7). Large copy number aberrations insert or remove large regions of

genetic material. Genomic deletions can be modeled as a long edge connecting the variants flanking

the deletion breakpoint. In this case, the model still expects the computation of k disjoint paths

spanning the deletion. Large insertions of genetic material can be modeled as the addition of a

temporary path in between or potentially overlapping vertices of Gh. The number of disjoint paths

in this case changes to k + 1. Translocations may be modeled in Gh by a combination of a deletion
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Figure 5.4: The auxiliary flow graphs (top) G1
h,g and (bottom) G1

h,c. For a k-ploid organism (in this
case k = 3, a flow of k with 1 capacity on each edge corresponds to a valid assignment of haplotype
paths to haplotypes of the phasing a level 1.

and an insertion.

5.2.8 General chain graph

The general chain graph Gg is our final graph structure for representing the overall phasing of cancer

genomes. Because there may be many matchings at each level of Gh, haplotype assembly of cycles

in GC will yield a set of potential phasings. Each of these partial phasings constrain the haplotype

assembly to include one of the k disjoint path solutions

Figure 5.5: Deletions, insertions, and translocations of genomic material can be modeled using
disjoint paths. The green edge models a deletion which effectively removed the deleted variants in
the chain graph. The blue node insertion adds an extra path in Gh. Translocations can be modeled
as an insertion and a deletion event.
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Gg is a graph built on the spanning tree cycle basis of GC . The vertices of Gg are constructed

in a similar manner as Gh; each edge (vi, vj) of GC generates a vertex for each haplotype in the

phasing of (vi, vj). Every Gh constructed from a non-conflicting cycle of GC defines a set of edge

adjacencies; these adjacencies are represented in Gg. Therefore, if two edges are adjacent in a Gh,

then they are also adjacent in Gg. Because of Lemma 10, we can determine the number of disjoint

path solutions passing through adjacent levels i and j by simply computing the valid extensions of

matchings from level i to j. Let sij be the probability of an extension between levels i and j. Then

we can compute sij as the product of the probabilities of the particular phasing for the adjacent

edges divided by the number of extensions. If we assume each of the l valid extensions of the sets

of matchings at adjacent levels are equally likely, then the weight of a particular extension pij/l is

added to the edges of Gh (and Gg).

However unlike Gh, Gg is not necessarily a trellis graph if the cycles in the basis do not agree on

the ordering of edge adjacencies (Figure 5.6). If Gg were a tree, finding a phasing could be modeled

as packing disjoint steiner trees or disjoint spanning trees. Instead, we model the computation of

the tumor haplotype assembly as the k-maximum weight node-disjoint subgraph problem. That is,

we compute a set of k node-disjoint subgraphs in Gg whose total weight is maximum over all k

node-disjoint subgraphs and includes every vertex in Gg.

Figure 5.6: (Left) An example cancer genome compass graph GC with three non-conflicting cycles.
The dashed lines represent edges not in the spanning tree of GC . The inclusion of each non-tree
edge creates a cycle in the cycle basis of GC . The two inner cycles ((v0, v1), (v1, v3), (v3, v0)) and
((v0, v2), (v2, v3), (v3, v0)) create the red-edge adjacencies in Gg (right). Computing the haplotype
assembly of a tree (Gg with just the red edges) is simple. However, if the blue non-tree edge is
added, the edge adjacency ((v0, v1), (v0, v2)) must be included in Gg creating a cycle.

HapCompass polyploid and tumor algorithms

HapCompass-Poly and HapCompass-Tumor optimize the minimum weighted edge removal problem

(MWER) formulation. MWER aims to compute a set of edges L of minimum weight, whose removal
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resolves all conflicting cycles of GC . After all conflicting cycles have been removed, each non-

conflicting cycle’s chain graph is added to Gg. Gg represents the constrained solution space by

containing the information each non-conflicting Gh. Because Gg may not be a tree, we select the

maximum weight matching extension for each level.

Both the HapCompass-Poly and HapCompass-Tumor algorithms penalize cycles with many dis-

joint path solutions and encourage disjoint path solutions with strong edge phasings. HapCompass-

Tumor additionally models haplotypes at different frequencies in the sample and handles variation

typical of cancer genomes. The HapCompass-Poly and HapCompass-Tumor algorithms can be bro-

ken into four major steps.

HapCompass-Poly/Tumor algorithm.

1. Compute GC , a spanning tree cycle basis, and the set of conflicting simple cycles.

2. For each conflicting simple cycle, remove the edge with the smallest likelihood.

3. After GC is void of conflicting cycles, compute Gg and then for each non-conflicting cycle:

(a) Compute the chain graph Gh.

(b) Compute matchings at each level and k disjoint paths.

(c) Add weight to adjacencies shared in Gh and Gg proportional to the likelihood of edge

phasings and number of disjoint paths taken through the edge (equations 5.1 and 5.3).

4. For each edge in Gg choose the matchings for adjacent vertices that given the maximum weight

extension.

We illustrate the modeling and algorithm with a series of examples. Let the compass graph GC

of a tumor sample with three unique haplotypes be shown in figure 5.1. Then, if (v0, v3), (v2, v1),

and (v3, v2) are the non-tree edges of GC , the chain graphs in figure 5.7 (left) are constructed.

Figure 5.7 (right) shows the Gg updated after the disjoint paths and weights of edges in Gh are

computed and distributed to Gg.

5.3 Results

We implemented HapCompass-Tumor/Poly and evaluated its performance on simulated polyploid

and tumor haplotypes. In these experiments we use insert size as a proxy for the computed haplotype

length. It has been shown that the dominant factor in producing long haplotype assemblies is the
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Figure 5.7: (Left) chain graphs (Gh) from the compass graph in figure 5.1. The level corresponding
to edges in GC are denoted by black (non-tree edges) and blue (spanning tree edges) lettering above
the vertices. In this example, the edge phasing probabilities in GC are all 1. So, an edge connecting
level i to level j which is in b disjoint path solutions will receive a weight of b/d if there are d unique
disjoint path solutions from level i to level j. The weights of edges calculated from disjoint siti paths
in each Gh are added to the Gg (right).

length between the read pairs (Aguiar and Istrail 2013; Halldorsson, Aguiar, and Istrail 2011).

Briefly, if the length between two variants is x and the insert size is y, then a sequence read can

never span the two variants if x > y.

5.3.1 Edge phasings

To evaluate HapCompass-Tumor/Poly, we simulated three haplotypes at random and simulated

reads from these haplotypes. The simulated reads were guaranteed to contain two SNPs (assuring

they are useful for haplotype assembly) and given normally distributed insert sizes. The polyploid

algorithm was run using both the greedy and probabilistic binning algorithms for deciding edge

phasings. Figure 5.8 demonstrates two interesting results: (1) for a small number of reads, the quality
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Figure 5.8: Comparison of the percentage of correctly phased polyploid SNP pairs for the greedy
and probabilistic binning algorithms for varying number of input reads.

of haplotype phasing is independent of the choice of binning method and (2) that the probabilistic

algorithm produces a more accurate phased solution than the greedy binning method for a large

range of simulated read counts.

5.3.2 Dependence on insert size and error rates

Using the sequence for the BRCA1 breast cancer susceptibility gene, we simulated three hyper

variable tumor haplotypes. Distance between variants were distributed normally ∼ N(500, 50). The

following procedure was repeated 250 times for each data point in Figure 5.9. Given the set of

variants which remained fixed for each experiment, a random phasing is computed that is consistent

with the allele distributions. We then sampled 10000 phase-informative simulated reads from the

true haplotypes and computed the average edit distance between assembled and true haplotypes. We

compared the distance of haplotype assemblies for the randomly generated triploid BRCA1 genes

while varying sequence read insert size, standard deviation of insert size, and single base substitution

error rate.

Figure 5.9 (left) demonstrates several interesting trends. First, as the insert size is increased the

haplotype assemblies become more accurate. Second, the more variable the insert length, the more

accurate the haplotype assembly. A hyper variable insert length appears to have a similar effect as

increasing the insert size. These findings confirm patterns observed in conventional diploid haplotype

assembly. Finally, while the error rate does affect haplotype assembly accuracy, as long as the error
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rate is less than 0.2%, the haplotype assemblies are similar in quality. This phenomenon is likely

caused by the constant coverage coupled with uncertainty in phasing the edges of GC . When the

coverage is fixed and the insert sizes are short, haplotype assemblies are smaller but more accurate.

Conversely, when error rates reach a threshold where edge phasings are no longer accurately called,

the haplotype assembly quality suffers.

5.3.3 Cancer genome heterogeneity

We also compared the accuracy of haplotype assembly in terms of tumor genome heterogeneity

(Figure 5.9 right). Sequencing parameters were fixed to produce insert sizes between 500 and 2500,

short insert size standard deviations, 10000 sequence reads, and no errors. Each data point contains

the average of 250 haplotype assembly edit distances. The more unique tumor haplotypes in the

sample the less accurate the solution. The increasing edit distance with 5 unique haplotypes between

insert sizes 2000 and 2500 is likely an effect of the rising uncertainty of edge phasings when coverage

is kept fixed and more edges are being generated in GC .

5.3.4 NA12878

We simulated paired tumor sequence reads and their mappings with Enhanced Artificial Genome

Engine (EAGLE) developed by Illumina Cambridge Ltd (personal communications). The sequencing

parameters were set to model paired-end Illumina data with 101bp read lengths and a mixture of

long (length=N(60000, 1412)) and short (empirical distribution from 2× 101 runs, with median size

∼ 300bp) fragment sizes. The variants simulated include SNV and indels called in NA12878 by the

Genome in a Bottle Consortium (Genome in a Bottle Consortium 2013) and the HCC1187 tumor

sample (Illumina Inc. 2013). Variants were combined then randomly divided into two sets for each

homologous chromosome, with 30X coverage for the first chromosome and 15X coverage for the

second to simulate tumor genome amplification. Sequence reads were mapped to their simulated

location after single base mismatches were introduced according to empirical error rates.

We evaluated HapCompass-Tumor/Poly on all autosomes of the EAGLE simulated data and

longer reads simulated using HapCompass. The reads simulated from HapCompass include medium

(200bp) and long (2000bp) read lengths with error rates of 2% and 5% respectively to model the

higher error rates associated with long-read high-throughput sequence technologies. We used the

number of allele bit flips required to map the sequence reads to the assembled haplotypes as the

evaluation metric. Table 5.1 shows the results for HapCompass-Tumor/Poly using the Kruskal-like
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Table 5.1: The proportion of incorrectly mapped alleles (error) by Gg resolution algorithm. Sequence
data was simulated for 1000 Genomes Project individual NA12878 using EAGLE to simulate Illumina
reads and HapCompass to simulate reads with medium (200bp, 2% error rate) and long (2000bp,
5% error rate) read lengths.

Gg resolution error (autosomes, EAGLE) error (chr20, 200bp) error (chr20, 2000bp)
Kruskal 0.002658 0.02079 0.04626

Kruskal Diverse 0.002659 0.02071 0.04679
Prim 0.002659 0.02789 0.05639

Prim Diverse 0.002659 0.02631 0.05867

and Prim-like algorithms for resolving Gg. Additionally, we implemented a scoring scheme that

scores pairs of vertices with more diversity in haplotype sequence higher (termed Diverse in Table

5.1). This scheme is designed to limit uninformative pairs of vertices in the spanning tree of the

compass graph GC .

Table 5.1 demonstrates that the accuracy of the haplotype assembly depends minimally on the

selection of algorithm when using Illumina-like sequencing parameters. However, as the read length

increases, the Kruskal-like algorithm becomes favorable.
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Part III

Identity-by-descent
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Chapter 6

Identity-by-descent Algorithms

6.1 Introduction

When haplotypes are inherited from a common ancestor, they are identical-by-descent (IBD, Figure

6.1). Tracts of IBD are disrupted by recombination so the expected lengths of IDB tracts are related

to the pedigree structure of the individuals involved and the number of generations till the least

common ancestor at that haplotype region. Co-inherited haplotypes can be used to phase genotypes

or map regions of the genome associated with a particular phenotype of interest.

6.1.1 Li-Stephens PAC-Likelihood Model and the O(m2n) time bound

Understanding and interpreting patters of linkage disequilibrium (LD) among multiple variants

in a genome-wide population sample is a major technical challenge in population genomics. A

large body of research literature is devoted to the topic including the computational framework

presented in the seminal work of Li and Stephens (Li and Stephens 2003). Building on the work

by Stephens, Smith, and Donnelly (2001), Hudson (1991), and Fearnhead and Donnelly (2001), the

Li-Stephens framework led the way towards major advances in the understanding and modeling of

linkage disequilibrium patterns and recombination.

The difficulties associated with modeling LD patterns at multiple loci include a number of long

standing analytical obstacles. Among existing bottlenecks is the notorious (1) curse of the pairwise,

as all the popular LD measures in the literature are pairwise measures, and the (2) haplotype block-

free approach to avoid ad hoc haplotype block definitions and “fake blocks” due to recombination

rate heterogeneity. Current methods for computing haplotype blocks result in the definition of ad
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male

female

Figure 6.1: A pedigree is shown with unique haplotype tracts represented by colored lines. Due
to recombination during meiosis, children inherit a mosaic of their parent’s haplotypes. A single
haplotype segment is shown passed identical-by-descent from the grandmother to the grandchildren.

hoc boundaries that sometimes present less LD within blocks than between blocks due to different

patterns of recombination. This phenomenon leads to spurious block-like clusters. The Li-Stephens

statistical model for LD, named the Product of Approximate Conditionals (PAC), is based on a

generalization of coalescent theory to include recombination (Hudson 1991; Kingman 1982).

The optimization problem introduces the PAC likelihood LPAC(ρ)

LPAC(ρ) = π̂(h1 | ρ)π̂(h2 | h1, ρ)...π̂(hm | h1, ..., hm−1, ρ)

where h1, ..., hm are the m sampled haplotypes, ρ denotes the recombination parameter, and π̂

represents an approximation of the corresponding conditional probabilities. Li and Stephens propose

a number of such approximations for approximate likelihood functions (Li and Stephens 2003).

LPAC(ρ) represents the unknown distribution

Prob(h1, ..., hm | ρ) = Prob(h1 | ρ)Prob(h2 | h1, ρ)...P rob(hm | h1, ..., hm−1, ρ)

The choice of π̂ gives the form of the likelihood objective function.
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The PAC likelihood is based on expanding the modeling to capture realistic genomic structure

while generalizing Ewens’ sampling formula and coalescent theory. The framework iteratively sam-

ples the m haplotypes; if the first k haplotypes have been sampled h1, ..., hk, then the conditional

distribution for the next sampled haplotype is Prob(hk+1 | h1, ..., hk). π̂ approximates this distribu-

tion and is constructed to satisfy the following axioms:

1. hk+1 is more likely to match a haplotype from h1, ..., hk that has been observed many times

rather than a haplotype that has been observed less frequently.

2. The probability of observing a novel haplotype decreases as k increases.

3. The probability of observing a novel haplotype increases as θ = 4Nµ increases, where N is the

population size and µ is the mutation rate.

4. If the next haplotype is not identical to a previously observed haplotype, it will tend to differ

by a small number of mutations from an existing haplotype (as in the Ewens’ sampling formula

model).

5. Due to recombination, hk+1 will resemble haplotypes h1, ..., hk over contiguous genomic regions;

the average physical length of these regions should be larger in genomic regions where the local

rate of recombination is low.

Intuitively, the next haplotype hk+1 should be an imperfect mosaic of the first k haplotypes,

with the size of the mosaic fragments being smaller for higher values of the recombination rate.

Although the proposed model (π̂A in the notation of Li and Stephens (2003)) satisfies the above

axioms and has the desirable property of being efficiently computable, it has a serious disadvantage.

As is stated in their article, this “unwelcome” feature of the PAC likelihoods corresponding to the

choices for π̂ is order dependence, that is, the choices are dependent on the order of the haplotypes

sampled. Other methods used in the literature, notable, Stephens, Smith, and Donnelly (2001) and

Fearnhead and Donnelly (2001), present the same problem of order dependence. Different haplotype

sampling permutations correspond to different distributions; these probability distributions do not

satisfy the property of exchangeability that we would expect to be satisfied by the true but unknown

distribution.

6.1.2 Identical-by-descent haplotype tracts

Haplotype tracts, or contiguous segments of haplotypes, are identical-by-descent (IBD) if they are

inherited from a common ancestor (Browning and Browning 2012). Tracts of haplotypes shared

93



IBD are disrupted by recombination so the expected lengths of the IDB tracts depends on the

pedigree structure of the sample and the number of generations till the least common ancestor at

that haplotype region. The computation of IBD is fundamental to genetic mapping and can be

inferred using the PAC likelihood model.

To model the effects of recombination, a hidden Markov model (HMM) is defined to achieve a

mosaic construction. At every variant, it is possible to transition to any of the haplotypes generated

so far with a given probability. Thus, a path through the chain starts with a segment from one

haplotype and continues with a segment from another haplotype and so on. To enforce the mosaic

segments to resemble haplotype tracts, the probability of continuing in the same haplotype without

jumping is defined exponentially in terms of the physical distance (assumed known) between the

markers; that is, if sites j and j+ 1 are at a small genetic distance apart, then they are highly likely

to exist on the same haplotype. The computation of the LPAC is linear in the number of variants

(n) and quadratic in the number of haplotypes (m) in the sample, hence the O(m2n) time bound.

In this work we present results that remove the pairwise quadratic dependence by computing

multi-shared haplotype tracts. Multi-shared haplotype tracts are maximally shared contiguous seg-

ments of haplotypes starting and ending at the same genomic position that cannot be extended

by adding more haplotypes in the sample. Because we represent the pairwise sharing in sets of

haplotypes, no more than O(mn) multi-shared haplotype tracts may exist.

6.1.3 Prior work

Building on the PAC model, the IMPUTE2 (Howie, Donnelly, and Marchini 2009) and MaCH (Li

et al. 2010) algorithms employ HMMs to model a sample set of haplotypes as an imperfect mosaic

of reference haplotypes. The usage of the forward-backward HMM algorithm brings these methods

in the same O(m2n) time bound class. The phasing program SHAPEIT (segmented haplotype

estimation and imputation tool) also builds on the PAC model by decomposing the haplotype matrix

uniformly into a number of segments and creating linear time mosaics within each such ad hoc

segmented structure (Delaneau, Marchini, and Zagury 2011). The dependence on the number of

segments is not considered in the time complexity.

PLINK (Purcell et al. 2007), FastIBD (Browning and Browning 2011a), DASH (Gusev et al.

2011), and IBD-Groupon (He 2013) are algorithms based on HMMs or graph theory clustering

methods that consider pairs of haplotypes to compute IBD tracts. Iterating over all such pairs takes

time O(m2n) and is intractable for large samples; this intractability is best described in the recent
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work of Gusev et al. 2011.

“Although the HMM schemes offer high resolution of detection [of IBD], the imple-

mentations require examining all pairs of samples and are intractable for GWAS-sized

cohorts. ... In aggregate, these identical-by-descent segments can represent the totality

of detectable recent haplotype sharing and could thus serve as refined proxies for recent

variants that are generally rare and difficult to detect otherwise.” Gusev et al. (2011)

Gusev et al. (2009) describes the computationally efficient algorithm GERMLINE which employs

a dictionary hashing approach. The input haplotype matrix is divided into discrete slices or windows

and haplotype words that hash to the same value are identified as shared. Due to this dependence

on windows, the algorithm is inherently inexact. While the identification of small haplotype tracts

within error-free windows can be performed in linear time, GERMLINE’s method for handling base

call errors is worst case quadratic. However, GERMLINE’s runtime has been shown to be near

linear time in practice (Browning and Browning 2012).

In what follows, we describe the Tractatus algorithm for computing IBD multi-shared haplotype

tracts from a sample of haplotypes and the Tractatus-HH algorithm for computing homozygous

haplotypes in a sample of genotypes. First, we present the computational model and algorithms.

We then compare the runtime of Tractatus to a generic pairwise algorithm, compares false positive

rates and power with GERMLINE, and provides an example computation of homozygous haplotype

regions in genome-wide association study data of autism.

Our work presented here addresses the lack of exchangeability in the sampling methods of the

Li-Stephens model and provides a rigorous result that gives a basis for sampling with the assured

exchangeability property. We also present a data structure that speeds up the HMM and the graph

clustering models for the detection of identical-by-descent haplotype tracts. Informally, a haplotype

tract or simply tract is a contiguous segment of a haplotype – defined by start and end variant indices

– that is shared (identical) by two or more haplotypes in a given sample of haplotypes. One can then

view each of the haplotypes in the set as a mosaic concatenation of tracts. Such a haplotype tract

decomposition is unique and a global property of the sample. Our Tractatus algorithm computes

the Tract tree of all the tracts of the haplotype sample in linear time in the size of the sample. The

Tract tree, related to a suffix tree, represents each haplotype tract in a single root-to-internal-node

path. Repeated substrings in distinct haplotypes are compressed and represented only once in the

Tract tree.
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6.2 Tractatus

Suffix trees are graph theoretic data structures for compressing the suffixes of a character string.

Several algorithms exist for suffix tree construction including the notable McCreight and Ukkonen

algorithms that achieve linear time and space constructions for O(1) alphabets (McCreight 1976;

Ukkonen 1995). Farach (1997) introduced the first suffix-tree construction algorithm that is linear

time and space for integer alphabets. Extensions to suffix-trees, commonly known as generalized

suffix trees, allow for suffix-tree construction of multiple strings.

The input to the problem of IBD tract inference is m haplotypes which are encoded as n-

length strings of 0’s and 1’s corresponding to the major and minor alleles of genomic variants

v1, ..., vn. Because we are interested in IBD relationships which are by definition interhaplotype,

naive application of suffix-tree construction algorithms to the set of haplotypes would poorly model

IBD by including intrahaplotype relationships. Let haplotype i be denoted hi and the allele of hi

at position j be denoted hi,j . Then, we model each haplotype hi = hi,1, hi,2, ..., hi,n with a new

string di = (hi,1, 1), (hi,2, 2), ..., (hi,n, n) for 1 ≤ i ≤ m. Computationally, the position-allele pairs

can be modeled as integers ∈ [0, 1, 2, ..., 2n − 1] where (hi,j , j) is 2 ∗ j + hi,j where hi,j ∈ 0, 1. The

transformed haplotype strings are termed tractized.

6.2.1 The Tractatus algorithm without errors

The Tractatus algorithm incorporates elements from integer alphabet suffix trees with auxiliary data

structures and algorithms for computing IBD haplotype tracts. Firstly, a suffix tree is built from the

set of m tractized haplotypes each of length n. To represent the tractized haplotypes, the alphabet

size is O(n), so Farach’s algorithm may be used to construct a suffix tree in linear time (Farach

1997). The suffix tree built from the tractized haplotypes is termed the Tract tree. After the Tract

tree is built, an O(mn) depth first post-order search (DFS) is computed to label each vertex with the

number of haplotype descendants. These pointers enable the computation of groups of individuals

sharing a tract in linear time.

Substrings of haplotypes are compressed if they are identical and contain the same start and end

positions in two or more haplotypes. We consider a path from the root to a node with k descendants

as maximal if it is not contained within any other path in the Tract tree. The maximal paths can

be computed using a depth first search of the Tract tree, starting with suffixes beginning at 0 and

ending at suffixes beginning with 2n − 1. Of course, if a tract is shared by k ≥ 2 haplotypes, it is

represented only once in the Tract tree. Figure 6.2 shows the construction of the Tract tree and

96



A B C
0 0 0 0 0
1 0 0 0 0
0 0 0 0 1

h0
h1
h2

v0  v1  v2  v3  v4

0 2 4 6 8
1 2 4 6 8
0 2 4 6 9

d0
d1
d2

0,2,4,6,8,$

2,4,6,8,$

6,8,$

8,$

D E

4,
6,

8,
$

1,2,4,6,8,$

0,2,4,6,8,$

2,4
,6,

8

6,8 8
4,6,8

$ $$ $$ $$ $

1,2,4,6,8,$

0,2,4,6

2,4
,6 6 84,6

$ $

9,$

8,$ 9,$

$ $

9,$8

$ $

9,$8

$ $

9,$8
0 1

2

3

4

5

6

7

search order haplotypes tract
0 {h0,h2} [v0,v3]
1 {h0,h1,h2} [v1,v3]
2 {h0,h1} [v1,v4]
3 {h0,h1,h2} [v2,v3]
4 {h0,h1} [v2,v4]
5 {h0,h1,h2} [v3,v3]
6 {h0,h1} [v3,v4]
7 {h0,h1} [v4,v4]

Figure 6.2: Construction of the Tract tree and running Tractatus on example input without errors
or allele mismatches. Terminator characters $ are colored to match tractized haplotypes and the
empty string (simply the terminator character) is omitted in this example. (A) The haplotype
matrix is encoded by an integer alphabet representing position-allele pairs. (B) Tractized haplotype
d0 is inserted in the Tract tree. The first tractized haplotype inserts O(n) nodes into the Tract tree.
(C) Tractized haplotype d1 is inserted in the Tract tree. The suffix of d1 starting at v0 requires
generation of a new node in the Tract tree but subsequent suffixes can be compressed along paths
from the root. (D) Tractized haplotype d2 is inserted in the Tract tree and the algorithmic search
order is given in brown integers adjacent to internal nodes. Leaf nodes have exactly one terminating
character (haplotype) and therefore do not have to be visited during the search. (E) The largest
IBD tracts are found at search numbers 0, 1, and 2. Saving references to these tracts enables the
determination that subsequent tracts are contained within already processed tracts.

computation of IBD tracts.

The internal nodes of the Tract tree also have an interpretation in regards to Fisher junctions. A

Fisher junction is a position in DNA between two variants such that the DNA segments that meet

in this virtual point were ancestrally on different chromosomes. Fisher junctions are represented in

the Tract tree where maximal tracts branch.

After maximal tracts are computed, they are quantified as IBD or IBS. Tractatus implements two

methods for calling maximally shared tracts IBD or IBS. A simple tract calling method thresholds

the length L (number of variants) or area (variants × haplotypes) of the tract in terms of the

haplotype matrix input. A more complex method considers the probability of a region being shared

IBD or identical-by-state (IBS). If two individuals are kth degree cousins, the probability they share
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a haplotype tract IBD is 2−2k due to the number of meioses between them (Kong et al. 2008). Let

the frequency of a variant at position i be fi. Then, the probability of IBD and IBS can be combined

to define the probability that a shared haplotype tract of length L and starting at position s for kth

degree cousins is IBD, Equation 6.1

P (IBD|L) =
2−2k

2−2k +
∏s+L

i=s (f2i + (1− fi)2)
(6.1)

The value of k can be approximated if the population structure is known. Tractatus without

errors is presented in Algorithm 1. Because the suffix tree is computable in O(mn) time with O(mn)

nodes, the tree traversals can be computed in O(mn) time thus giving Theorem 5.

Theorem 5. Given a set of m haplotypes each of length n, Algorithm 1 computes the Tract tree

and the set of IBD tracts in O(mn) time and space.

input : m haplotypes each of length n, minimum length L or IBD probability p
output: set of IBD tracts

H ← tractized haplotypes

T (H)← Tract tree of H

Post-order DFS of T(H) to compute descendant haplotypes from each node

DFS of T(H):
if path in DFS is longer than L or P (IBD) > p and node has at least 2 descendant
haplotypes then

if tract is not contained in previously computed tract then
report as an IBD tract

end

else
push children nodes on stack

end

Algorithm 1: Tractatus (error free)

6.2.2 The Tractatus algorithm with errors and allele mismatches

Incorporating base call errors and additional variability gained after differentiation from the least

common ancestor requires additional computations on the Tract tree and a statistical modeling of

haplotype allele mismatches. The Tractatus algorithm with errors is parameterized by an estimated

probability of error or mismatched alleles pt, a p-value threshold corresponding to a test for the

number of errors in a tract ph, a minimum length partial IBD tract l, and a minimum length of

calling a full IBD tract L (or alternatively P(IBD) as defined in Equation 6.1). We will, in turn,

explain the significance of each parameter.
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Figure 6.3: Construction of the Tract tree and running Tractatus on example input with allele
mismatches. (A) h0 and h1 share a tract IBD in the interval [vi, vk] with a single allele mismatch
at vj . (B) By the construction of the Tract tree, there must be some path (here shown as a single
edge but it may be split into a path by other haplotypes) from root to internal node that includes
both [vi, vk) and (vk, vi).

The algorithm proceeds similarly to the error-free case. We build the tractized haplotypes, Tract

tree and populate necessary data structures with a DFS. Because errors and additional variation now

exist which can break up tracts (and therefore paths in the Tract tree), we compute partial tracts

as evidence of IBD. We compute a DFS from the root, and a maximal partial tract is saved when

the algorithm arrives at a node with path length at least l and at least 2 haplotype descendants. If

we find a partial tract in a subsequent traversal, we can check in O(1) time is it is contained in a

maximal partial tract already computed. Figure 6.3 shows an example of the Tract tree construction

with a single allele mismatch.

Because we computed the partial tracts using a DFS, the tracts are ordered by starting position.

For each tract, tracts starting at a position prior and including a subset of the same haplotypes are

combined if the extension is statistically probable. To determine the scan distance, we can compute

a probability of observing a partially shared tract of length l given a window distance w (or this can

be user defined). Assuming the generation of errors is independent and the probability of generating

an error is pe, we model the probability of generating at least k errors in an interval of li in t

haplotypes as a Poisson process with λ = pelit. For each extension we calculate the probability of

observing at least k mismatches and accept the extension if the probability is greater than ph. The

parameter pt is used as an approximation of pe. The haplotype consensus sequence of the tract is

taken by majority rule at each variant position.

Pseudocode is given in Algorithm 2. While the algorithm is parameterized with five parameters,

they are optional and default values are suitable in most cases.

Construction of the Tract-tree takes O(mn) time and space. O(mn) time is needed to prepare
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input : m haplotypes each of length n, partial tract length l, minimum length L or IBD
probability p, p-value threshold ph, estimated probability of error pt, length of
scan w

output: set of IBD tracts

H ← tractized haplotypes

T (H)← Tract tree of H

Post-order DFS of T(H) to compute descendant haplotypes from each node

DFS of T(H):
if path in DFS is longer than l, node has at least 2 descendant haplotypes, and is maximal
then

add partial IBD tract to set of tracts S
else

push children nodes on stack
end
for tract s ∈ S do

Check for extension in previously processed tracts within scan region w

Compute probability according to number of errors in extension, pt, the length of the
extension, and the number of individuals

If probability > ph, merge tracts
end
for tract s ∈ S do

If length of s is greater than L or P (IBD) > p, report as IBD tract
end

Algorithm 2: Tractatus (with errors)

data structures and compute maximally shared partial tracts (DFS). A tract can be checked if it

is contained in a previously processed tract in O(1) time. It takes O(mnw) to merge partial IBD

tracts under reasonable assumptions of the merging process and in the worst case when we have to

extend tracts covering the entire matrix, thus yielding Theorem 6.

Theorem 6. Given a set of m haplotypes each of length n, a scan distance w and a set of partial

haplotype tracts, Algorithm 2 computes the Tract tree and set of IBD tracts in time and space

O(mnw).

6.2.3 Extensions for homozygous haplotypes

A particular class of identical-by-descent relationships are long regions of extended homozygosity in

genotypes. The two dominant concepts of extended regions of allelic homozygosity are the homozy-

gous haplotype (HH) concept introduced by Miyazawa et al. (2007) and the well-known region or

run of homozygosity (ROH). A HH is defined as a genotype after the removal of heterozygous vari-

ants such that only homozygous variants remain. Miyazawa et al. 2007 compared every pair of HH

in a small cohort and reported regions of consecutive matches over a threshold. ROHs are defined
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as extended genomic regions of homozygous variants allowing for a small number of heterozygous

variants contained within. We can rigorously capture both concepts using Tractatus.

A naive model for computing HH would consider each heterozygous site as a wildcard allowing

for either the 0 or 1 allele. A haplotype with k heterozygous sites would require insertion of 2k

haplotypes into the Tract tree. This immediately suggests a fixed-parameter tractable algorithm

using the same machinery as Tractatus. However, we can remove the dependence on k using a key

insight regarding the structure of the Tract tree and tractized haplotypes.

Errors split tracts in the Tract tree such that the shared tract fragments are on different paths

from the root. Instead of encoding all 2k possible haplotypes, we simply remove the heterozygous

alleles from the tractized string. Because the position is inherently encoded in the tractized string,

the removal of the heterozygous alleles would have the same effect as an error. Therefore, if we

encode genotypes by simply removing heterozygous variants in the tractized string, we can run

Algorithm 2 to produce all the homozygous haplotypes for a set of genotypes in linear time and

space.

6.3 Results

The principle advantages of Tractatus over existing methods are the theoretically guaranteed sub-

quadratic runtime and exact results in the error-free case which translate to improved results in

the case with errors and allele mismatches. We evaluate the runtime of Tractatus against a generic

algorithm that processes individuals in pairs using phased HapMap haplotypes from several pop-

ulations. We then compare the power and false positive rates of both Tractatus and GERMLINE

which is a leading method for IBD inference (Gusev et al. 2009). Finally, we show an application of

Tractatus-HH by inferring homozygous haplotypes in a previously known homozygous region in the

Simons Simplex Collection genome-wide association study data (Fischbach and Lord 2010).

6.3.1 Tractatus vs. pairwise algorithm runtimes

To evaluate the runtime of Tractatus versus pairwise methods, we implemented the pairwise equiv-

alent algorithm which iterates through pairs of individuals and reports tracts of variants occurring

in both individuals over some threshold length of variants. The data consist of phased haplotypes

from HapMap Phase III Release 2 in the ASW, CEU, CHB, CHD, GIH, JPT, LWK, MEX, MKK,

TSI, and YRI populations (International HapMap Consortium 2003). Figure 6.4 left shows the inde-

pendence between chromosome and computation time for the Tractatus suffix tree and the pairwise
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Figure 6.4: Left: Tractatus and the pairwise algorithm were run on haplotypes from each chro-
mosome of all HapMap populations for a minimum tract length of 100, and a randomly selected
interval of 1000 variants. The experiment was repeated 100 times for each chromosome and elapsed
time was averaged. Right: Tractatus and the pairwise algorithm were run on a randomly selected
interval of 1000 variants from chromosome 22. The population size varied from 100 to twice the
actual population size by resampling haplotypes with a 0.05 allele switch rate (per base).

algorithm. Because the runtime of each algorithm does not depend on the chromosome, we varied

the population sizes while keeping the number of variants constant for chromosome 22. Figure 6.4

right shows the quadratic computation time growth for the pairwise algorithm while Tractatus tree

construction remains linear in the number of individuals.

6.3.2 False positive rates

Because it is difficult to construct a gold-standard baseline of true IBD regions in real data, our false

positive rate and power calculations are performed on simulated data. To estimate the false positive

rates for GERMLINE and Tractatus we simulated haplotypes at random and generated a single IBD

region defined as having identical haplotype alleles in the region of IBD. We generated 100 haplotype

matrices where m = n = 500 for all possible combinations of the number of individuals sharing a

segment IBD ∈ [3, 5, 10], the number of variants in the IBD region ∈ [50, 60, 70, 80, 90, 100, 150, 200]

and the single base substitution error rates ∈ [0.0, 0.01, 0.05]. In total, we generated 7200 haplotype

matrices but aggregated the data across the number of individuals and variants in the IBD region

because the false positive rates did not vary over these dimensions.

Table 6.1 shows that both algorithms have very low false positive rates in terms of the number
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of bases incorrectly called in an IBD region. However, Tractatus incorrectly calls less individuals

in IBD regions than GERMLINE. In this experiment, IBD regions were generated in block sizes

and GERMLINE benefits from calling IBD regions in terms of blocks or windows. GERMLINE and

Tractatus call a similar amount of bases IBD because Tractatus can over-estimate the ends of blocks.

However, when individuals are compared, Table 6.1 shows that Tractatus computes a significantly

smaller number of false positive IBD regions.

Table 6.1: False positive rates for the GERMLINE (G) and Tractatus (T) algorithms as a function
of error rate. Each row corresponds to 2400 randomly generated haplotype matrices. The error rate
was varied in a simulated haplotype matrix containing a single IBD region. False positive rates were
calculated in terms of the number of non-IBD bases being called IBD (bases) and the number of
individuals called IBD who were not in an IBD region (people) for the GERMLINE and Tractatus
algorithms.

error rate G FPR bases T FPR bases G FPR people T FPR people

0.0 1.3 · 10−4 1.16 · 10−4 0.016 2.13 · 10−3

0.01 1.2 · 10−4 1.11 · 10−4 0.012 8.72 · 10−3

0.05 6.1 · 10−5 4.18 · 10−5 0.015 7.43 · 10−3

6.3.3 Power

We apply Tractatus and GERMLINE to the simulated data from Section 6.3.2 and estimate power

by computing the number of times GERMLINE and Tractatus correctly call the IBD region in terms

of variants and individuals. We considered an individual being called correctly if an IBD region was

called and overlapped anywhere in the interval of the true IBD tract. We set the -bits and min m

options of GERMLINE to 20 and 40 respectively which sets the slice size for exact matches to 20

consecutive variants and the minimum length of a match to be 40 MB (which corresponds to 40

variants in our simulated data). For a valid comparison, we set Tractatus to accept partial tract

sizes of 20 variants and a minimum length of an IBD region to 40 variants.

Figure 6.5 shows the power of GERMLINE and Tractatus to infer IBD as a function of IBD region

length, number of haplotypes sharing the region, and the probability of base call error. Figure 6.5

right displays a jagged curve for GERMLINE which is likely due to the algorithmic dependence on

window size. Both algorithms perform relatively well for shorter IBD tracts but Tractatus is clearly

more powerful when the number of haplotypes sharing the tract increases or the base call error rates

are low. Additionally, the minimum partial tract length for Tractatus could be lowered to increase

the power to find smaller IBD tracts (at a cost of higher false positive rates). Another interesting

observation is that both GERMLINE and Tractatus are able to perfectly infer all individuals sharing
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Figure 6.5: The power to infer IBD by individual haplotypes (left) and variant bases (right) as a
function of the length of the IBD region in variants (x-axis), the probability of base call error (p),
and the number of individual haplotypes sharing the IBD segment (i).

the IBD region in the perfect data case, but, GERMLINE is unable to compute the entire IBD

interval in some data.

6.3.4 Homozygous haplotypes in autism GWAS data

As a proof of concept for Tractatus-HH, we extracted a 250kb genomic region identified as having

a strong homozygosity signal in the Simons Simplex Collection (Gamsiz et al. 2013). The fami-

lies analyzed include 1,159 simplex families each with at least one child affected with autism and

genotyped on the Illumina 1Mv3 Duo microarray. Gamsiz et al. (2013) approached the problem

by treating a homozygous region as a marker and testing for association or burden for the region

as a whole. Our analysis shows that regions of homozygosity are more complex than previously

assumed and there can be multiple regions overlapping and sharing some segments of homozygous

haplotypes but largely different in other segments (Table 6.2). We found more individuals possessing

a homozygous haplotype than Gamsiz et al. 2013 because the probability of generating an error or

heterozygous site was set to a large value (0.1) but in general this parameter can be adjusted to be

more conservative.
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Table 6.2: Analysis of a 250kb region of homozygosity in the Simons Simplex Collection. The
homozygous interval is defined as a region start and end in terms of variants in the genomic interval,
a number of individuals (size), and the number of individuals unique to the particular homozygous
haplotype group (unique). One region is dominant and contains most of the individuals, but there
are smaller regions with some overlap that contain unique individuals not sharing a homozygous
haplotype with the larger region.

region start region end size unique

0 111 20 10
0 109 20 12
0 109 252 238
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Conclusion
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Chapter 7

Discussion

7.1 Haplotype phasing

7.1.1 Deletion inference

Instead of small recurrent deletions, DELISHUS can easily be modified to target different deletion

architectures. Under Formulation 1, DELISHUS computes all inherited or de novo deletions with

maximal clique size above a user-defined threshold. However, researchers may want to find deletions

that are large and rare instead of small and recurrent. By restricting edges in the deletion graph to

within trios or pairs, DELISHUS essentially reduces to the algorithm of Conrad et al. (2006). The

new deletion graph would be much less connected and thus the threshold can be lowered (to about

two in our internal tests) while retaining a tolerable false positive rate.

While we have found Formulation 1 to be the most useful, it only considers the case for which

an error might convert a normal inheritance pattern to an evidence of deletion. However, all po-

tential conversions between deletion categories are possible (Fig. 7.1). Formulation 3 represents an

alternative to Formulation 1 which models deletions and genotyping errors without the usage of a

threshold.

Formulation 3. We are now allowed to correct any 1 → X and any X → 1 in M ′. Find the

minimum number of switches from 1→ X or X → 1 such that all cliques are disjoint.

Regardless of the formulation, there may still be other types of errors in SNP data such as tech-

nical artifacts producing completely erroneous SNPs. These are usually filtered in a preprocessing

quality control (QC) step, but it is often advantageous to allow DELISHUS to process the pre-QC

data. For example, a small deletion encompassing a single SNP and associated to the phenotype of
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• Given: The LOH overlap graph and a new 
operation which switches an X to a 1

• Find: minimum number of switches from X to 
1 or 1 to X such that all cliques are disjoint

X

Figure 7.1: M ′ is shown on the left with a superimposition of evidence of deletion vertices and edge
connections. On the right, we demonstrate that making one X → 1 correction unifies evidence of
deletion sites into one larger deletion.

interest could mimic the behavior of a technical artifact and should not be removed prior to running

DELISHUS.

Before experimental wet-lab validation, recurrent deletions should be prioritized in terms of

association to disease. Because the inferred deletions are hemizygous, a natural choice for association

is the transmission disequilibrium test (TDT) which measures over-transmission of the deletion to

affected children (Spielman and Ewens 1996; Spielman, McGinnis, and Ewens 1993). However,

due to the transmitted deletion signal being undetectable in a single individual, DELISHUS cannot

compute aberrations in parents that are not transmitted. Deletions that remain undetected in non

transmitted cases will introduce bias in the TDT. The sibling transmission disequilibrium test (sib

TDT) is an alternative to the TDT when variation cannot be detected in parents (Spielman and

Ewens 1998). In the sib TDT, data from unaffected siblings are used in place of parents making it

a more appropriate test for association if unaffected siblings are available.

Another important step before enacting expensive experimental validation is providing additional

computational support for the deletion calls. Both signal intensities from probes and sequencing

data can be used for orthogonal analyses to DELISHUS.

Signal intensities also provide a valuable resource for deletion inference and programs like Pen-

nCNV have been designed to exploit the change in signal intensity in deletion intervals (Wang et al.

2007). But HMM-based algorithms for deletion inference in signal intensity data have difficulties

inferring small deletions with few probes spanning the interval. An alternate approach considers

the distribution of log R ratios for each deletion. The log R ratio distribution within the deletion

interval in individuals harboring the deletion can be compared to the theoretical null distribution.

The same computation is possible for the set of individuals without deletions.

As sequencing becomes cheaper and the sequencing of thousands of individuals becomes feasible,

GWAS will shift from SNP arrays to deep genome or exome sequencing. Due to the higher density of

variant calls in sequence data, DELISHUS will be able to infer deletions at a higher resolution than
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array data. The 1000 Genomes Project is one example of a large scale sequencing project where

a number of the genomes sequenced include parent-child trios and pairs of HapMap individuals.

DELISHUS can be used on the SNP data to validate previous calls in the HapMap data.

7.2 Haplotype assembly

The size of the haplotype blocks produced and, ultimately, the quality of the assembled haplotypes is

a function of several factors. The primary difficulty for obtaining large haplotype blocks is the small

nature and lack of diversity of insert lengths. We demonstrated a novel modeling and computational

method that begins to address this difficulty by exploiting shared IBD haplotype structure. In gen-

eral, assembling the haplotypes of related individuals has considerable benefits which help overcome

undesirable properties of the sequencing data. The first benefit comes from the extra coverage on the

shared haplotype, which helps in differentiating actual phasings from sequencing errors. However,

the most notable advantage is being able to include more SNPs into the haplotype assembly which

helps extend the assembly (past regions of low read coverage for example). But, the major advances

in block sizes will likely be the result of novel experimental procedures and technologies; for instance,

not only do the single molecule sequencers promise larger read lengths, they also enable the inclusion

of multiple and large insert lengths. Projects like the Assemblathon are proving that chromosome-

wide haplotype assembly is possible using only second generation sequencing technologies (Bradnam

et al. 2013).

7.2.1 Diploid genomes

Due to the exponential solution space, complicated error signatures, and other factors, genome-wide

diploid haplotype inference is still a difficult task. HapCompass is a proven framework for haplotype

assembly but there are a number of extensions that may improve results. For instance, we did not

mention the usage of base call or read mapping quality scores in our computations. HapCompass can

filter sequence reads or base calls but a more elegant solution would be to convert the base call quality

score into a probability the allele was called correctly. This probability can then be incorporated

into the pairwise phasing likelihood for variants in the compass graph GC . Also we demonstrated in

the Pacific Biosciences experiments that the choice of assembly method should be informed by the

sequencing technology and desired result. The Levy et al. (2007) method mapped more fragments

error free than HapCompass but contained many more single base changes in fragments required

to reproduce the inferred haplotypes. Considering the Pacific Biosciences data has very high error
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rates and generating an error-free read is unlikely, a solution with the minimum number of corrected

errors is likely preferred over a solution that successfully maps more fragments without errors.

7.2.2 Polyploid and tumor genomes

Organisms having more than two sets of homologous chromosomes are becoming the target of many

research groups interested in studying the genomics of disease, phylogenetics, and evolution (Chen

and Ni 2006; Leitch and Leitch 2008). Polyploidy typically occurs in human disease due to the dupli-

cation of a particular chromosome, for example, in Edwards, Patau, and Down syndrome. While far

fewer mammalian organisms are polyploid, specific mammalian cells may undergo polyploidization,

for example in human liver hepatocytes (Gentric, Celton-Morizur, and Desdouets 2012). In addition,

polyploid organisms are ubiquitous in the Plant and Fungi clades, present in crops that we ingest,

convert into bioenergy, and feed to livestock. Understanding the genomics of both the desirable –

e.g. increased crop yield – and undesirable – e.g. susceptibility to disease – properties of plants may

lead to critical advances in many research areas but requires untangling the polyploid genome and its

variation. As more data becomes available, haplotype assembly will become an essential component

for understanding the relationship between genome and phenome in polyploid organisms.

Opportunities exist to extend HapCompass-Tumor/Poly to address some of the limitations in the

current model. First, HapCompass-Tumor/Poly only computes a single solution when the compass

graph model allows computation of suboptimal solutions. Phase extension in Gg is deterministic but

many highly probable suboptimal solutions may exist. As long as the number of alternative disjoint

paths is bounded by a low degree polynomial, we can carry these partial solutions to the assembly

step and report multiple haplotype assemblies.

Second, incorporating a priori knowledge of haplotype distributions from population samples or

long read lengths can improve the assembly. For example, we assumed each valid haplotype phasing

for a cycle in GC is equally likely. However, this assumption can be easily modified to accommodate

known haplotype likelihoods in the area (e.g. linkage disequilibrium). Consider a collection of valid

disjoint paths for a cycle in GC ; if the probabilities of all phasings are equally likely and the edge

extension has i distinct matchings, then each matching is given a weight 1
i . If, however, one of

the haplotypes in an extension is never observed in the population, HapCompass-Tumor/Poly could

penalize the extension.

A related application of HapCompass-Tumor/Poly is in cancer panomics. Much attention in

cancer research has been focused on allelic specific expression (ASE). Studies have shown that
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germline ASE is associated with cancer risk (Gao et al. 2012; Valle et al. 2009); and somatic ASE is

associated with tumor development (Tuch et al. 2010). ASE in cancer was found not only correlated

with CNAs (Tuch et al. 2010), but also with allelic specific methylation (ASM) (Lin, Giannopoulou,

et al. 2013). Existing algorithms for detecting ASE with RNA-seq and detecting ASM with Bisulfite-

Seq do not usually make use of phased genotype information (Fang, Hodges, et al. 2012; Tuch et al.

2010). It is possible that phased haplotypes from whole genome sequencing of tumor samples can

be used as a reference for RNA-seq and Bisulfite-seq alignment when such data is available.

Finally, we consider the connection between the viral quasispecies reconstruction (VQR) prob-

lem and polyploid haplotype assembly. VQR aims to compute the spectrum of viral quasispecies

haplotypes from the sequence reads of a heterogeneous viral sample. The problems of haplotype

assembly and VQR are similar, but the research literature is largely independent due to the inability

of haplotype assembly algorithms to model more than two sets of homologous haplotypes. However,

it is possible to model VQR with HapCompass-Tumor/Poly by leaving the number of haplotypes

in the sample (k) as an unknown parameter. Two possible approaches include inferring the num-

ber of quasispecies a priori and then performing haplotype assembly with k unique haplotypes or

computing assemblies for a number of different k and comparing the quasispecies solutions. But,

using a general haplotype assembly tool for VQR does not take advantage of two critical properties

of most viral genomes: (1) knowledge of the phylogenetic relationships between mutations is known

for well-studied viral genomes especially those under selective pressures from treatment and (2) the

genomes are many orders of magnitude smaller than eukaryotes.

7.3 Identity-by-descent

The importance of provable bounds and exact solutions is exemplified in Section 6.3 and, in par-

ticular, Figure 6.5. Even in the error free case, GERMLINE approximates computing IBD tracts

by processing windows or vertical slices of the haplotype matrix. Tractatus is able to compute

maximally shared partial tracts exactly (which are exactly the IBD tracts in the error-free case).

Moreover, the inexactness of GERMLINE, due to the dependence of hashing windows, is exacer-

bated in the case of errors. If errors fall in a pattern that cause individuals sharing a segment

IBD to hash to different values, then GERMLINE produces false negatives. Tractatus computes

all maximally shared partial tracts without dependence on windows. Lastly, in the worst case, the

number of matches per word is quadratic giving GERMLINE a complexity quadratic in the number

of individuals. Even though this is unrealistic in practice, Tractatus compresses individuals sharing
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a partial tract into a single path of the suffix tree.

The Tract tree alone is an interesting data structure with many possible applications. Once

the Tract tree is computed for a set of haplotypes, the statistics of constructing the mosaic of tract

combinations can be done rigorously such that sampling can be implemented in an order independent

manner satisfying the exchangeability property. For the HMM constructions, the availability of the

complete set of tracts would provide a rigorous basis for defining the transition probabilities and

overall linear time construction. For the graph clustering methods, the Tract tree represents tracts

occurring multiple times together and thus this construction will maximize the power in association

studies.

Unfortunately, the issue of acquiring haplotypes remains. Almost exclusively, algorithms for

computing IBD require haplotypes due, in part, to the higher power to infer a more subtle IBD

sharing than in genotype data. However, this is not a major roadblock considering haplotype phasing

algorithms can be highly parallelized or made more efficient using reference panels. Additionally,

haplotype assembly algorithms are very efficient and can extend genome-wide (Aguiar and Istrail

2012).

Our analysis of the autism genome-wide association study data shows that homozygous regions

cannot simply be treated as a biallelic markers. Distinct homozygous haplotypes, while having

a similar signature of homozygosity, can be composed of entirely different alleles. These findings

suggest that homozygous regions should be considered as complex, multi-allelic markers.

We note that a similar linear time construction could be used for constructing a Tract tree for

a set of haplotypes where there is known genetic information about the distance between variants

as in the Li-Stephens PAC model (Li and Stephens 2003). The genetic distance can be modeled

approximately as an integer and used in a similar encoding to compress “identical” tracts.

7.4 Future Work

7.4.1 Haplotype specificity

An interesting problem to investigate is haplotype specificity in other areas of life sciences, for exam-

ple, transcriptomics. Haplotype specific interactions are a component of the genetic heterogeneity

puzzle which has yet to be fully explored. One goal is to investigate haplotype specific expres-

sion at the gene or splice-form level (Turro et al. 2011). Allelic expression imbalance is not only

important in the context of medical genomics but also independently interesting in the context of
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haplotype assembly of transcriptome data and splice-form identification. The genome and transcrip-

tome sequences can be compared using heterozygous variants as a basis for haplotype assembly of

the transcriptome and estimating allelic expression imbalance.

7.4.2 Identity-by-descent in genotypes

The haplotype phase uncertainty that exists in genotypes creates a number of problems for identity-

by-descent tract inference in genotype data. IBD inference methods that rely on allele sharing

require much longer tracts to differentiate IBD and IBS haplotype tracts. Furthermore, subquadratic

algorithms (in terms of the number of individuals), such as Tractatus and GERMLINE, use suffix

trees and hashing respectively; both methods have difficulties modeling the heterozygous sites which

are fundamentally wildcard (or don’t care) characters. An extremely important open problem is

to develop IBD inference algorithms in genotypes that are subquadratic in terms of the input and

retain the resolution of IBD algorithms on haplotypes. We believe an approach exploiting the Tract

tree would be able to infer IBD in genotypes in subquadratic time perhaps with a direct application

of the Tractatus-HH algorithm. However, the number of heterozygous variants is usually very high,

so additional computation would be required to handle the large quantity of ambiguous sites.

7.4.3 Tractatus applications

Tractatus is applicable in areas external to IBD inference. Primer design is essential for genotyping,

allele specific PCR, and sequencing. In the context of disease, primers must be designed to maximize

the typing of variants associated with disease susceptibility or resistance. HIV subtype-aware variant

identification is an area where there is need for such tools. The Tractatus framework can be modified

to compute the minimum number of probes to cover HIV viral haplotype sequences in specific

subtypes. The computation of the minimum set of probes can be defined for various objectives, for

example, (1 – unlimited resources) covering x% of the viral haplotypes, (2 – uncertainty in sequence)

covering at least 1 of the IUPAC-code expanded sequences for each haplotype, and (3 – stochastic

probe binding) allowing y mismatches between probe and sequence. These problems can be solved

exactly with a combination of Tractatus and graph theoretic optimizations, e.g., set cover for (2)

and maximum independent set for (3).

113



7.4.4 Haplotype assembly of tumor genomes

Generally, it is believed that cancer can be viewed as a evolutionary process, where normal cells

acquire somatic mutations followed by clonal expansion (Greaves and Maley 2012). The different

sub-clones, related by a phylogenetic tree, usually co-exist in equilibrium controlled by the micro-

environment. This equilibrium can be disturbed when either some cell acquires an advantageous

mutation that favors their fitness; or when external forces, such as chemotherapy, favor certain

clones. Most of the algorithms for detecting tumor somatic mutations assume that there is a major

clone and only detect those mutations in the major clone (Boeva et al. 2011; Gusnanto et al. 2012).

In the clinical setting, failure to detect the variants in minor clones can lead to missed treatments

for a cancer patient. Furthermore, the ability of detecting different subclones and their frequencies

can be useful in monitoring the cancer treatment progress.

Future work could include extensions to HapCompass-Tumor to accommodate clonal haplotypes.

For simplicity of the discussion, we will focus on single point mutations, although it is trivial to

include small indels as well. While the tumor somatic SNV density varies widely between different

cancer types, they occur at orders of magnitude less than germline SNP (Greenman et al. 2009).

It is then safe to assume that the intermediate “neighboring” mutations of most somatic SNVs are

germline SNPs. First, we can phase the tumor sample assuming there are two haplotypes with

different proportions, using the SNPs from the germline mutation only. Then we identify those

somatic mutations that are linked to germline mutations to infer tumor haplotypes. The clonal

frequencies and normal contamination can be inferred using finite mixture models in a Baysian

framework.

7.4.5 Joint haplotype assembly, phasing, and identity-by-descent infer-

ence

An interesting and emerging area of research focuses on combining the statistically dominated world

of haplotype phasing with the combinatorics of haplotype assembly into a unified haplotype recon-

struction framework. But combining haplotype phasing, assembly, IBD inference, and polyploidy

into a single framework complicates the model and algorithms. The more variables to consider, the

more complex the algorithm, and haplotype reconstruction algorithms that do not extend genome-

wide are significantly less useful than genome-wide algorithms. One possibility is to extend the

HapCompass algorithm, which represents the relationship between alleles encoded in sequence reads
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as a likelihood, to incorporate evidence from other sources. For example, haplotypes shared identical-

by-descent restrict the solution space of phased haplotypes. Reference haplotypes can be used to

increase the likelihood of haplotype assemblies which share haplotype tracts at the population level.

7.4.6 Haplotypes to phenotypes

The problem of mapping genomic variation to genes and pathways is an open problem with potential

medical applications. One difficulty with interpreting results from large genome-wide associations is

that variants with low p-values often cluster in regions of no known functional significance or regions

overlapping many genes. Both of these situations are commonplace due to the complex patterns

of linkage disequilibrium throughout the human genome and incomplete knowledge of functional

components. Without a discernible connection between variant and protein, it is difficult to de-

sign targeted drug therapy. But, with a more complete knowledge of factors influencing phenotype,

the links between genome and phenome can start to be more completely inferred. For example,

along with single variant associations, information extracted from IBD shared haplotypes and ex-

pression data (e.g. expression quantitative trait loci) can inform exactly which variants influence

the expression of pathways and genes. Moreover, reconstructions of evolutionary history, for exam-

ple with ancestral recombination graphs, can shed light on the particular mutations explaining the

segregation of cases and controls.
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Chapter 8

Summary of contributions

8.1 Haplotype phasing

With increasingly dense SNP arrays and whole-exome sequencing becoming commonplace for studies

of association, we are now ready for the genome-wide search for smaller deletion variants. Although

the power of these newer technologies is enormous, genetic heterogeneity remains a daunting chal-

lenge and the identification of all polymorphisms is paramount to the understanding of complex

disease. While many large genomic deletions have already been found and replicated, the problem

of identifying small deletions remains a considerable challenge.

In this dissertation we presented three computational problems related to deletion inference in

SNP data with a focus on small recurrent deletions in autism. We introduced the DELISHUS

algorithmic framework for computing inherited deletions, de novo deletions, and critical regions.

Using a formulation inspired by the complexity of the deletion signature in autism, we showed that

the problem of computing all inherited and de novo deletion configurations in SNP data can be

solved in polynomial time (and empirically within minutes). We presented systematic methods

to compute false positive rates and power for the DELISHUS and single individual algorithms and

demonstrated how to use the calculations to evaluate algorithmic performance and tune the threshold

parameter. Comparisons of power while controlling for false positive rates, show that the DELISHUS

algorithm excels at inferring small recurrent deletions. We also showed that finding critical regions

of recurrent deletions may also be solved in polynomial time. Furthermore, we have shown that long-

range phasing using Clark consistency graphs is practical for very large datasets and the accuracy

of the algorithm improves rapidly with the number of individuals in the dataset.
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8.2 Haplotype assembly

8.2.1 Diploid genomes

Haplotype assembly is becoming increasingly important as the cost of sequencing plummets and

more genome-wide and whole-exome studies are conducted (Levy et al. 2007; Tewhey et al. 2011).

We have designed and implemented a haplotype assembly algorithm that is widely applicable to

these studies because it does not make any prior assumptions on the input data. Through the use

of simulations, we show that supplementing 1000 Genomes Project data with sequencing data of a

particular type connects GC , enabling the haplotype assembly of entire chromosomes. We described

the fragment mapping phase relationship and Boolean fragment mapping metrics that capture the

quality of the haplotype assembly through support from mapped fragments. These metrics can be

used independent of the algorithm and without knowing the true haplotypes to evaluate the quality

of the haplotype assembly.

We compared HapCompass to leading haplotype assembly software packages that can also process

arbitrary input sequence data: HapCut, the Levy et al. (2007) algorithm, and the Genome Analysis

ToolKit’s read-backed phasing algorithm. HapCompass is shown to be more accurate on real 1000

genomes data for the BFM and FMPR metrics. We also show that HapCompass is more accurate

when we supplement the existing 1000 genomes real data with simulated Illumina reads for BFM,

FMPR and haplotype switch metrics on haplotype blocks of unprecedented size. As high-throughput

sequencing becomes more available to a greater number of researchers, we believe HapCompass will

provide a valuable tool to quickly and accurately identify the haplotypes of diploid organisms.

8.2.2 Polyploid and tumor genomes

In this work, we developed algorithms and models for tumor genome assembly building on our exist-

ing haplotype assembly framework HapCompass. We demonstrated how to model tumor haplotype

heterogeneity and haplotypes containing CNAs and translocations. The HapCompass-Tumor/Poly

algorithm was presented using the combined evidence of cycles in GC and disjoint paths in Gh to

inform which haplotype assemblies in Gg are probable. Finally, we evaluated the HapCompass-

Tumor/Poly algorithm on simulated cancer data showing that, while the accuracy is a function of

many parameters, including the level of cancer genome heterogeneity, we are still able to produce

accurate haplotype assemblies.
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8.3 Identity-by-descent

Lastly, we described the Tractatus algorithm for computing IBD tracts with and without errors and

homozygous haplotypes. Tractatus represents the first provably exact algorithm for finding multi-

shared IBD tracts given a set of haplotypes as input; it computes all subsets of individuals that share

tracts and the corresponding shared tracts in time linear in the size of the input. By starting from

an exact and rigorous algorithmic baseline, we are able to modify downstream decisions based on

the global IBD tract decomposition. We demonstrate that the runtime of Tractatus grows linearly

with the size of the input while a generic pairwise algorithm that process individuals in pairs grows

quadratically using phased HapMap haplotypes from several populations. Also, we exhibit superior

statistical power to infer IBD tracts with less false positives than GERMLINE. Finally, with a

conceptual change to the interpretation of genotypes, we show that homozygous haplotype inference

in genotypes can be modeled in the same Tractatus framework and demonstrated Tractatus-HH in

a previously known homozygous region of the Simons Simplex Collection autism data.

8.4 Concluding Remarks

Although many pieces of the genetic heterogeneity puzzle have yet to be fully understood, haplo-

types and haplotype reconstruction algorithms are emerging as an integral component. Deletion

haplotypes have been strongly associated with numerous conditions. Haplotype phasing and as-

sembly algorithms provide the fundamental sequences for phylogenetic reconstruction, genotype

imputation, linkage disequilibrium, and characterizing the connection between genotype and phe-

notype. Identity-by-descent allows for the mapping of regions associated with disease and inference

of population substructure. As the technology changes, new problems will undoubtedly emerge,

but haplotypes and haplotype reconstruction algorithms will remain fundamentally important to

population genomics and medical bioinformatics.
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Appendix A

Supplemental figures

Average Edges vs Window Size
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Figure A.0.1: The average number of edges per window size stays relatively constant until a window
size of about 180. The graph becomes more connected at this point likely because the window size
is small enough to not be largely affected by recombination (but still large enough for the shared
tracts to not likely be IBS).
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Figure A.0.2: The evidence of deletion, consistent with deletion, and no deletion Mendelian inheri-
tance patterns are shown with the true genome sequence and deletion vector calls.
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Appendix B

Supplemental tables

Probability of Error per Site For all SNP-trio pairs, we add a Mendelian error ac-
cording to this probability (assumed independent for
each site).

Interval Length The exact length of the generated deletion.
Trios in Deletion The exact number of trios sharing the generated dele-

tion.
Probability of evidence of deletion The probability a SNP is an evidence of deletion site

within the generated deletion interval.
Coefficient of Genotype Error Call The objective function cost for calling an evidence of

deletion site a genotyping error (parameter k1 in our
objective function)

Coefficient of Inherited Deletion Call The objective function cost for calling a set of evi-
dence of deletion sites an inherited deletion (param-
eter k2 in our objective function)

True Positive There is one interval that contains the inherited dele-
tion, thus a true positive corresponds to correctly
identifying an inherited deletion in this region.

False Positive We have a false positive if we identify an inherited
deletion in a region disjoint from the generated dele-
tion’s region.

Table B.0.1: Six tunable parameters and two scoring metrics for testing of the deletion inference
algorithm.
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Abbreviations

AGRE Autism Genetic Resource Exchange

ASD Autism spectrum disorders

ASE allelic specific expression

ASM allelic specific methylation

BFM Boolean fragment mapping

chr chromosome(s)

CNV/CNA copy number variation/aberration

DELISHUS algorithm for inferring deletions in shared haplotypes using SNPs)

DFS depth first search

DNA deoxyribonucleic acid

EAGLE Enhanced Artificial Genome Engine

FMPR fragment mapping phase relationship

GATK Genome Analysis ToolKit

GWAS genome-wide association study

HC HapCompass

HH homozygous haplotype

HIV human immunodeficiency virus

HMM hidden Markov model

IBD identity-by-descent or identical-by-descent

IBS identity-by-state or identical-by-state

LD linkage disequilibrium

LE linkage equilibrium

LOH loss of heterozygosity

MEC minimum error correction
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MER minimum edge removal

MFR minimum fragment removal

MSR minimum SNP removal

MWER minimum weighted edge removal

MWVR minimum weighted vertex removal

P1/P2 HapMap Phase 1/2+3

PAC Product of Approximate Conditionals

PCR polymerase chain reaction

QC quality control

RNA ribonucleic acid

ROH run of homozygosity

SE switch error

SI single individual algorithm (in context of inferring deletions)

sib TDT sibling transmission disequilibrium test

SNP/SNV single nucleotide polymorphism/variant

ST spanning trees

SV structural variant/variation

TDT transmission disequilibrium test

VQR viral quasispecies reconstruction

Table B.0.2: A list of abbreviations and acronyms used throughout

the dissertation.

124



References

Aguiar, Derek and Sorin Istrail (2012). HAPCOMPASS: A fast cycle basis algorithm for accurate

haplotype assembly of sequence data. J. Comput. Biol. 19 (6), 577–590.

Aguiar, Derek and Sorin Istrail (2013). Haplotype assembly in polyploid genomes and identical

by descent shared tracts. Bioinformatics 29 (13). Appeared in the Proceedings of 21st Annual

International Conference on Intelligent Systems for Molecular Biology, i352–i360.

Aguiar, Derek, Eric Morrow, and Sorin Istrail (2014). Tractatus: An Exact and Subquadratic Algo-

rithm for Inferring Identical-by-Descent Multi-shared Haplotype Tracts. Research in Computa-

tional Molecular Biology. Ed. by Roded Sharan. Vol. 8394. Lecture Notes in Computer Science.

Springer International Publishing, 1–17.

Aguiar, Derek, Wendy SW Wong, and Sorin Istrail (2014). Tumor haplotype assembly algorithms

for cancer genomics. Pacific Symposium on Biocomputing. Vol. 19. World Scientific, 3–14.

Aguiar, Derek, Bjarni V. Halldorsson, Eric M. Morrow, and Sorin Istrail (2012). DELISHUS: an

efficient and exact algorithm for genome-wide detection of deletion polymorphism in autism.

Bioinformatics 28 (12). Appeared in the Proceedings of 20th Annual International Conference

on Intelligent Systems for Molecular Biology, i154–i162.

Bafna, Vineet, Sorin Istrail, Giuseppe Lancia, and Romeo Rizzi (2005). Polynomial and APX-hard

cases of the individual haplotyping problem. Theoretical Computer Science 335 (1), 109–125.

Bansal, Vikas and Vineet Bafna (2008). HapCUT: an efficient and accurate algorithm for the hap-

lotype assembly problem. Bioinformatics 24 (16), i153–159.

Bansal, Vikas, Aaron L. Halpern, Nelson Axelrod, and Vineet Bafna (2008). An MCMC algorithm

for haplotype assembly from whole-genome sequence data. Genome Research 18 (8), 1336–1346.

Boeva, Valentina, Andrei Zinovyev, Kevin Bleakley, Jean-Philippe Vert, Isabelle Janoueix-Lerosey,

Olivier Delattre, and Emmanuel Barillot (2011). Control-free calling of copy number alterations in

deep-sequencing data using GC-content normalization. Bioinformatics (Oxford, England) 27 (2),

268–9.

125



Bradnam, Keith, Joseph Fass, Anton Alexandrov, Paul Baranay, Michael Bechner, Inanc Birol, Se-

bastien Boisvert, Jarrod Chapman, Guillaume Chapuis, et al. (2013). Assemblathon 2: evaluating

de novo methods of genome assembly in three vertebrate species. GigaScience 2 (1), 10.

Broad Institute HapMap Pacific Biosciences Data (15 January 2013). https : / / github . com /

PacificBiosciences/DevNet/wiki/Datasets.

Browning, B. L. and S. R. Browning (2009). A unified approach to genotype imputation and

haplotype-phase inference for large data sets of trios and unrelated individuals. American journal

of human genetics 84 (2), 210–223.

Browning, Brian L. and Sharon R. Browning (2011a). A fast, powerful method for detecting identity

by descent. American journal of human genetics 88 (2), 173–182.

Browning, Sharon R. and Brian L. Browning (2011b). Haplotype phasing: existing methods and new

developments. Nat Rev Genet 12 (10), 703–714.

Browning, Sharon R. and Brian L. Browning (2012). Identity by Descent Between Distant Relatives:

Detection and Applications. Annual Review of Genetics 46 (1), 617–633.

Bruining, Hilgo et al. (2010). Dissecting the Clinical Heterogeneity of Autism Spectrum Disorders

through Defined Genotypes. PLoS ONE 5 (5), e10887.

Cazals, F. and C. Karande (2008). A note on the problem of reporting maximal cliques. Theoretical

Computer Science 407 (1-3), 564–568.

Chen, Z. Jeffrey and Zhongfu Ni (2006). Mechanisms of genomic rearrangements and gene expression

changes in plant polyploids. BioEssays 28 (3), 240–252.

Ching, Michael S.L. et al. (2010). Deletions of NRXN1 (neurexin-1) predispose to a wide spectrum

of developmental disorders. American Journal of Medical Genetics Part B: Neuropsychiatric

Genetics 153B (4), 937–947.

Cibulskis, Kristian, Aaron McKenna, Tim Fennell, Eric Banks, Mark DePristo, and Gad Getz (2011).

ContEst: estimating cross-contamination of human samples in next-generation sequencing data.

Bioinformatics (Oxford, England) 27 (18), 2601–2.

Clark, AG (1990). Inference of haplotypes from PCR-amplified samples of diploid populations. Mol

Biol Evol 7 (2), 111–122.

Conrad, Donald F., T. Daniel Andrews, Nigel P. Carter, Matthew E. Hurles, and Jonathan K.

Pritchard (2006). A high-resolution survey of deletion polymorphism in the human genome.

Nature genetics 38 (1), 75–81.

Conrad, Donald F. et al. (2009). Origins and functional impact of copy number variation in the

human genome. Nature 464 (7289), 704–712.

126

https://github.com/PacificBiosciences/DevNet/wiki/Datasets
https://github.com/PacificBiosciences/DevNet/wiki/Datasets


Consortium, The International Multiple Sclerosis Genetics (2007). Risk Alleles for Multiple Sclerosis

Identified by a Genomewide Study. N Engl J Med 357 (9), 851–862.

Corona, Erik et al. (2007). Identification of Deletion Polymorphisms from Haplotypes. Research in

Computational Molecular Biology. Lecture Notes in Computer Science 4453. Ed. by Terry Speed

and Haiyan Huang, 354–365.

Delaneau, Olivier, Jonathan Marchini, and Jean-Francois Zagury (2011). A linear complexity phasing

method for thousands of genomes. Nat Meth 9 (2), 179–181.

Deo, Narsingh, G. Prabhu, and M. S. Krishnamoorthy (1982). Algorithms for Generating Funda-

mental Cycles in a Graph. ACM Trans. Math. Softw. 8 (1), 26–42.

DePristo, Mark A., Eric Banks, Ryan Poplin, Kiran V. Garimella, Jared R. Maguire, Christopher

Hartl, Anthony A. Philippakis, Guillermo del Angel, Manuel A. Rivas, et al. (2011). A framework

for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet

43 (5), 491–498.

Ding, Li, Matthew J Ellis, et al. (2010). Genome remodelling in a basal-like breast cancer metastasis

and xenograft. Nature 464 (7291), 999–1005.

Fang, Fang, Emily Hodges, et al. (2012). Genomic landscape of human allele-specific DNA methy-

lation. Proceedings of the National Academy of Sciences 109 (19), 7332–7337.

Farach, M. (1997). Optimal suffix tree construction with large alphabets. Proceedings of the 38th

Annual Symposium on Foundations of Computer Science. FOCS ’97. Washington, DC, USA:

IEEE Computer Society, 137–143.

Fearnhead, Paul and Peter Donnelly (2001). Estimating Recombination Rates From Population

Genetic Data. Genetics 159 (3), 1299–1318.

Fiegler, H. et al. (2006). High resolution array-CGH analysis of single cells. Nucleic Acid Research

35, 1–10.

Fischbach, Gerald D. and Catherine Lord (2010). The Simons Simplex Collection: A Resource for

Identification of Autism Genetic Risk Factors. Neuron 68 (2), 192–195.

Gamsiz, Ece D, Emma W Viscidi, Abbie M Frederick, Shailender Nagpal, Stephan J Sanders, Michael

T Murtha, Michael Schmidt, Elizabeth W Triche, Daniel H Geschwind, et al. (2013). Intellectual

Disability Is Associated with Increased Runs of Homozygosity in Simplex Autism. The American

Journal of Human Genetics 93 (1), 103–109.

Gao, Chuan, Karthik Devarajan, Yan Zhou, Carolyn M Slater, Mary B Daly, and Xiaowei Chen

(2012). Identifying breast cancer risk loci by global differential allele-specific expression (DASE)

analysis in mammary epithelial transcriptome. BMC genomics 13 (1), 570.

127



Genome in a Bottle Consortium (2013). NIST NA12878 Highly Confident integrated genotype.

Gentric, G., S. Celton-Morizur, and C. Desdouets (2012). Polyploidy and liver proliferation. Clinics

and Research in Hepatology and Gastroenterology 36 (1), 29–34.

Geraci, Filippo (2010). A comparison of several algorithms for the single individual SNP haplotyping

reconstruction problem. Bioinformatics (Oxford, England) 26 (18), 2217–2225.

Glessner, Joseph T. et al. (2009). Autism genome-wide copy number variation reveals ubiquitin and

neuronal genes. Nature 459 (7246), 569–573.

Greaves, Mel and Carlo C Maley (2012). Clonal evolution in cancer. Nature 481 (7381), 306–13.

Greenman, Christopher, Philip Stephens, Raffaella Smith, Gillian L Dalgliesh, Christopher Hunter,

Graham Bignell, Helen Davies, Jon Teague, Adam Butler, et al. (2009). Patterns of somatic

mutation in human cancer genomes. Nature 446 (7132), 153–158.

Gudbjartsson, Daniel F., G. Bragi Walters, Gudmar Thorleifsson, Hreinn Stefansson, Bjarni V.

Halldorsson, Pasha Zusmanovich, Patrick Sulem, Steinunn Thorlacius, Arnaldur Gylfason, et al.

(2008). Many sequence variants affecting diversity of adult human height. Nat Genet 40 (5),

609–615.

Guilmatre, Audrey et al. (2009). Recurrent Rearrangements in Synaptic and Neurodevelopmental

Genes and Shared Biologic Pathways in Schizophrenia, Autism, and Mental Retardation. Arch

Gen Psychiatry 66 (9), 947–956.

Gusev, Alexander, Jennifer K. Lowe, Markus Stoffel, Mark J. Daly, David Altshuler, Jan L. Breslow,

Jeffrey M. Friedman, and Itsik Pe’er (2009). Whole population, genome-wide mapping of hidden

relatedness. Genome Res. 19 (2), 318–326.

Gusev, Alexander, Eimear E. Kenny, Jennifer K. Lowe, Jaqueline Salit, Richa Saxena, Sekar Kathire-

san, David M. Altshuler, Jeffrey M. Friedman, Jan L. Breslow, et al. (2011). DASH: A Method

for Identical-by-Descent Haplotype Mapping Uncovers Association with Recent Variation. Am J

Hum Genet 88 (6), 706–717.

Gusnanto, Arief, Henry M Wood, Yudi Pawitan, Pamela Rabbitts, and Stefano Berri (2012). Cor-

recting for cancer genome size and tumour cell content enables better estimation of copy number

alterations from next-generation sequence data. Bioinformatics (Oxford, England) 28 (1), 40–7.

Hague, Stephen et al. (2003). Early-onset Parkinson’s disease caused by a compound heterozygous

DJ-1 mutation. Annals of Neurology 54 (2), 271–274.

Halldorsson, Bjarni V., Derek Aguiar, and Sorin Istrail (2011). Haplotype Phasing by Multi-Assembly

of Shared Haplotypes: Phase-Dependent Interactions Between Rare Variants. Proceedings of the

Pacific Symposium on Biocomputing, 88–99.

128
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